SootDiff

Bytecode Comparison Across Different Java Compilers

Andreas Dann
andreas.dann@upb.de
Heinz Nixdorf Institut
Paderborn University
Paderborn, Germany

Ben Hermann
ben.hermann@upb.de
Heinz Nixdorf Institut
Paderborn University
Paderborn, Germany

Eric Bodden
eric.bodden@upb.de
Heinz Nixdorf Institut
Paderborn University
Fraunhofer IEM

Abstract

Different Java compilers and compiler versions, e.g., javac
or ecj, produce different bytecode from the same source
code. This makes it hard to trace if the bytecode of an open-
source library really matches the provided source code. More-
over, it prevents one from detecting which open-source li-
braries have been re-compiled and rebundled into a single jar,
which is a common way to distribute an application. Such
rebundling is problematic because it prevents one to check if
the jar file contains open-source libraries with known vulner-
abilities. To cope with these problems, we propose the tool
SooTDIrr that uses Soot’s intermediate representation Jim-
ple, in combination with code clone detection techniques, to
reduce dissimilarities introduced by different compilers, and
to identify clones. Our results show that SOOTDIFF success-
fully identifies clones in 102 of 144 cases, whereas bytecode
comparison succeeds in 58 cases only.

CCS Concepts - Security and privacy — Software and
application security; « Software and its engineering;

Keywords Intermediate Representation, Code Clone De-
tection, Static Analysis

ACM Reference Format:

Andreas Dann, Ben Hermann, and Eric Bodden. 2019. SootDiff:
Bytecode Comparison Across Different Java Compilers. In Proceed-
ings of the 8th ACM SIGPLAN International Workshop on the State Of
the Art in Program Analysis (SOAP ’19), June 22, 2019, Phoenix, AZ,
USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3315568.3329966

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SOAP ’19, June 22, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6720-2/19/06...$15.00
https://doi.org/10.1145/3315568.3329966

Paderborn, Germany

1 Introduction

Java projects often include a considerable amount of open-
source libraries from public repositories, e.g., Maven Central
which contains more than 3.5 million® artifacts. Developers
often include existing libraries by copying and pasting li-
brary source code or bytecode into their project [2, 3, 6, 11].
This raises license and security problems, as copyright terms
may be violated or libraries with known vulnerabilities may
become assembled into a project. A simple comparison of
the project’s bytecode with the library’s code to identify
which parts originate from the library is difficult, as different
Java compilers or configured target versions produce slightly
different bytecode. For instance, the bytecode generated by
javac for version 1.5 differs from the bytecode generated
for version 1.8. Thus, a simple comparison based on the byte-
code will fail. Even if the source code of a library is openly
available the exact compiler configuration must be known
and used to recompile the source code. This information,
however, is rarely available.

Developers have to trust that the vendors of an artifact
compiled the source code without any modifications - as
they do not know the exact compiler configuration to (re-
)produce the same bytecode. There exists no option to trace
and validate that the bytecode hosted in public repositories
corresponds to the published source code.

Even under the assumption that the libraries are benign,
developers may accidentally include known vulnerable li-
braries into their application [11]. To check if the project
is susceptible to published vulnerabilities it is necessary to
check if the project actually includes vulnerable library code.

Detecting library code inside a project becomes even more
difficult by the fact that developers commonly bundle their
software together, either by bundling all required libraries
into a single jar (rebundling) or by embedding libraries re-
compiled source code or bytecode of libraries directly into
their project using different package names [3, 5, 11]. How-
ever, not only local libraries, residing on the developer’s ma-
chine, but also libraries hosted in repositories, e.g., Maven
Central, are subject to repackaging and rebundling, and thus
may contain foreign code.

by March 2019

https://doi.org/10.1145/3315568.3329966
https://doi.org/10.1145/3315568.3329966
https://doi.org/10.1145/3315568.3329966

SOAP 19, June 22, 2019, Phoenix, AZ, USA

To cope with repackaging, rebundling, different compilers,
and unavailable library source code, we propose to use the
intermediate representation Jimple [18] of the static analysis
framework Soot [12] to identify the libraries and versions a
project includes, instead of using the source code or bytecode
directly. To do so SooTDi1FF? integrates and enriches Soot
with an implementation of Myers’ Diff algorithm tailored
for Jimple and additional optimization steps to reduce dis-
similarities between different Java compilers. In contrast to
Java bytecode which uses more than 200 different instruc-
tions, Jimple uses only 15 distinct instructions. As we show,
for this reason many different but functionally equivalent
code constructs are likely to coincide on the Jimple level. In
contrast to techniques that identify libraries using statistical
information that is orthogonal to the choice of compiler, e.g.,
hashes of method signatures, SooTDIFF considers low-level
details such as method bodies, which is required to identify
the library’s exact version - which in turn is required to
identify the published vulnerabilities affecting the particular
version.

To validate the feasibility of our approach, we compare
how SooTDIirF performs compared to an approach solely
based on bytecode comparison. Therefore, we check for 144
different classes in bytecode format, which we generated
with different compilers and target version, originating from
17 Java source files, how often SooTDI1FF and a bytecode
comparison correctly identifies that two bytecode classes
originate from the same source. In total, SOOTDIFF success-
fully identifies for 102 test cases that they originate from the
same source code, whereas a comparison based on bytecode
succeeds only for 58 test cases. Thus, our results show that
SootDr1rr and Jimple reduce dissimilarities introduced by dif-
ferent Java compiler and Java target versions. Consequently,
Jimple eases the detection of similarities and differences be-
tween different bytecode artifacts.

In summary, this paper makes the following contributions:

e We present an approach to compare the bytecode pro-
duced by different Java compilers based on the inter-
mediate representation Jimple in Section 3.

e We compare the performance of our approach against
a naive bytecode comparison in Section 4.

2 Background

Jimple The static analysis framework Soot [12] uses an
intermediate representation named Jimple [18] to produce a
format for representing Java source and bytecode for static
code analysis. Jimple serves as an abstraction layer by dras-
tically reducing the number of instructions needed to rep-
resent bytecode. Jimple uses only 15 different instructions
whereas Java bytecode is composed of over 200 instructions.
The reduced number of instructions mitigates the dissimi-
larities introduced by different Java versions and compilers,

Zhttps://github.com/secure-software-engineering/sootdiff

Andreas Dann, Ben Hermann, and Eric Bodden

as the 200 bytecode instructions are mapped to 15 Jimple
instructions. Thus, Jimple helps to compare the bytecode
generated by different compilers and eases the detection of
code clones.

Figures 1a-2 show an example of Java source code, its byte-
code, and Jimple code. Similar to bytecode, Jimple transforms
Java’s control structures, e.g., if-else, loops, to goto instruc-
tions and program labels. For instance, the if-condition in
the source code, shown in Figure 1a in Line 4, is translated
to the branch instruction ifeq in Figure 1b in Line 7. The
majority of lines in the bytecode, namely the Lines 9-17,
constructs the string "Debug: "+s using java.lang.String-
Builder referring to methods and strings (#9-#14) stored in
the class’ constant pool.

In contrast to the bytecode, the Jimple code declares all
variables explicitly, shown in Figure 2. The instructions to
constructs the string and invoke the StringBuilder are
fully resolved in Lines 17-20. Moreover, the condition on the
variable debug is stated explicitly in Line 14.

1 class Point2d {

2 private boolean debug;

3 public void dprint(String s){

4 if (debug)

5 System.out.println("Debug:"+s);
6 3

7}

(a) Java Source Code

1 class Point2d {

2 private boolean debug;
3 public void dprint(java.lang.String);
4 Code:

5 0: aload_0

6 1: getfield #4

7 4: ifeq 32

8 7: getstatic #8

910: new #9

10 13: dup

11 14: invokespecial #10
12 17: ldc #11

1319: invokevirtual #12
14 22: aload_1

15 23: invokevirtual #12
16 26: invokevirtual #13
17 29: invokevirtual #14
18 32: return }

(b) Bytecode generated with javac for target version 1.8 (human-

readable format)

Figure 1. Java Source Code vs. Bytecode

Java Compilers Several compilers to produce JVM-com-
patible bytecode from Java source code exist. The most com-
mon are Oracle’s javac, the Eclipse Compiler for Java (ECJ)?,
IBM Jikes®, or the GNU Compiler for the Java programming

3https://www.eclipse.org/jdt/core/
4https://sourceforge.net/projects/jikes/

https://github.com/secure-software-engineering/sootdiff
https://www.eclipse.org/jdt/core/
https://sourceforge.net/projects/jikes/

SootDiff

1 class Point2d extends java.lang.Object{
2 private boolean debug;

3 public void dprint(java.lang.String)

4 { Point2d ro;

5 java.lang.String ri1, $r6;

boolean $z0;

java.lang.StringBuilder $r2, $r4, $r5;
java.io.PrintStream $r3;

© ® 9 o

10 r@ := @this: Point2d;
11 r1 := @parameter@: java.lang.String;
12 $z0 = r0.<Point2d: boolean debug>;

14 if $z0 == 0 goto labell;

15 $r3 = <java.lang.System: java.io.PrintStream out>;

16 $r2 = new java.lang.StringBuilder;

17 specialinvoke $r2.<java.lang.StringBuilder: void <init>()>();

18 $r4 = virtualinvoke $r2.<java.lang.StringBuilder:
java.lang.StringBuilder
append(java.lang.String)>("Debug:");

19 $r5 = virtualinvoke $r4.<java.lang.StringBuilder:
java.lang.StringBuilder append(java.lang.String)>(r1);

20 $r6 = virtualinvoke $r5.<java.lang.StringBuilder:
java.lang.String toString()>Q);

1 virtualinvoke $r3.<java.io.PrintStream: void
println(java.lang.String)>($r6);

22 labell:

23 return;} }

o

Figure 2. Jimple parsed from bytecode generated with javac
target version 1.8

language (GCJ)°. Since the Java language specification [15]
does not state if and how a compiler should optimize certain
Java language features during compile-time, optimizations
are a design decision of the particular compiler vendor. Thus,
the bytecode created by different compilers differ.

A small example for the different optimizations is given in
the figures below. Figure 3a and Figure 3b show the bytecode
and Jimple code generated by the ECJ for the class Point2d®.
In contrast to Oracle’s compiler, shown in Figure 2, ECJ
produces slightly different bytecode as the constant string
"Debug:" is inlined directly into the StringBuilder con-
structor in Line 18, and thus requires one variable and invoke
instruction less. Consequently, the bytecode generated by
Oracle’s Java compiler and the bytecode generated by ECJ
for the source class Point2d differ.

Moreover, Java compilers support the option to generate
bytecode for different Java language versions, as the differ-
ent versions of the Java language version support different
bytecode instructions. Thus, a compiler may generate dif-
ferent bytecode for different target language versions, e.g.,
Java 1.8 or Java 1.5. Consequently, simply comparing the
bytecode is insufficient as different Java compiler produce
slightly different bytecode, even one compiler may produce
different bytecode for different Java target versions. On top

Shttps://web.archive.org/web/20070509055923/http://gcc.gnu.org/java/
®Sample Java Class University Illinois https://www.cs.uic.edu/~sloan/
CLASSES/java/

SOAP ’19, June 22, 2019, Phoenix, AZ, USA

1 class Point2d extends

2 private boolean debug; java.lang.Object{

3 descriptor: Z 2 private boolean debug;

4 3

5 public void 4 public void dprint(String){

1 class Point2d {

dprint(String); 5 Point2d ro;
6 descriptor: 6 java.lang.String r1, $r6;
(Ljava/lang/String;)V 7 boolean $z0;
7 Code: 8 java.lang.StringBuilder $r2, $r4;
8 0: aload_o 9 java.io.PrintStream $r3;
9 1: getfield #20 10
10 4: ifeq 29 11 r@ := @this: Point2d;
11 7: getstatic #35 12 r1 := @parameter@:
1210: new #41 java.lang.String;
1313: dup 13 $z0 = r0@.<Point2d: boolean debug>;
14 14: ldc #43 14
1516: invokespecial #45 15 if $z0@ == @ goto labell;
16 19: aload_1 16 $r3 = <java.lang.System:
17 20: invokevirtual #47 java.io.PrintStream out>;
18 23: invokevirtual #51 17 $r2 = new java.lang.StringBuilder;
19 26: invokevirtual #55 18 specialinvoke

20 29: return } $r2.<java.lang.StringBuilder:

void <init>()>("Debug:");
(a) (Decompiled) Bytecode 19 $r4 = virtualinvoke

. . <iava.) . . :
ecj target version 1.8 ﬂfrz java 1ang Str‘%ngBuﬂder
java.lang.StringBuilder

append(java.lang.String)>(r1);

20 $r5 = virtualinvoke
$r5.<java.lang.StringBuilder:
java.lang.String
toString()>(Q);

21 virtualinvoke
$r3.<java.io.PrintStream:
void
println(java.lang.String)>($r5);

22 labell:

23 return;} }

(b) Jimple parsed from bytecode gen-
erated with ecj target version 1.8

Figure 3. Bytecode vs. Jimple

of that, the comparison of Figure 2 and Figure 3b shows that
even the (unoptimized) Jimple code parsed from the bytecode
generated by javac and ecj differs.

3 Design: SootDiff

The idea of SooTDIFF is to use Jimple to compare two classes.
This allows us to match classes with equivalent behavior
even when they are produced with different Java compilers
or different configurations. Additionally, this reduces the
dissimilarities introduced by rebundling.

Figure 4 shows SooTDI1FF’s approach in a nutshell. SooTD-
IFF’s result is a set of diff chunks for the class files using clone
detection algorithms. Our approach is open to use with dif-
ferent traditional and established code clone detection tools.
We currently use Myers’ algorithm [14] to compare meth-
ods’ bodies using java-diff-utils’. This greedy algorithm,
which is for instance used in GNU DiffUtils, calculates the
differences between two strings and a sequence of edits to

"https://github.com/java-diff-utils/java-diff-utils

https://web.archive.org/web/20070509055923/http://gcc.gnu.org/java/
https://www.cs.uic.edu/~sloan/CLASSES/java/
https://www.cs.uic.edu/~sloan/CLASSES/java/
https://github.com/java-diff-utils/java-diff-utils

SOAP 19, June 22, 2019, Phoenix, AZ, USA

convert one string to the other. The algorithm recursively
finds for two sequences the longest common subsequence
with the smallest edit sequence. Once this is done, the al-
gorithm compares recursively two subsequences preceding
and following the matched sequence until there are no more
sequences left for comparison. We only use Myers’ algorithm
for comparing method bodies, whereas we compare the sig-
natures of classes, methods, and fields semantically using
apache: commons : DiffBuilder?® directly in Soot, and thus
independent of their ordering in the code, e.g., the sequence
in which the class declares its members or the sequence of
method parameters.

In a first step, we use the Soot framework [12] to pro-
duce Jimple from the bytecode classes to compare, which
may differ if they have been generated by different Java
compiler. Therefore, we pass the bytecode files to Soot to
transform them to Jimple. In a second step, SOOTDIFF opti-
mizes the Jimple representation using Soot’s internal Jimple
optimizer [18]. In this optimization step, SOOTDIFF applies

constant-propagation, dead-code-elimination, and unconditional-

branch folder to the Jimple code [12, 18]. Thereby, these op-
timization steps reduce potential dissimilarities between the
Jimple code caused by differences in the bytecode produced
by different Java compiler.

In a third step, SooTDIFF further optimizes the created
Jimple representation, and thus reduces dissimilarities. Cur-
rently, SOOTDIFF contains an optimization step to reduce
dissimilarities when constructing strings in Java using the
java.lang.StringBuilder API as shown in the Figure 2
in Section 2. In the future, one can add further steps for op-
timizing and evaluating simple arithmetic expressions. For
instance, an optimization step may transforms an instruc-
tion of the form int val = 7 + 5 % 3 + xto int
val = 22 + x by evaluating the arithmetic expression,
which is, partially done by the ecj. Finally, we compare
the optimized Jimple representations using Myers’ Diff al-
gorithm [14] and report the differences in the form of diff
chunks using apache: commons:DiffBuilder.

4 FEvaluation

In the following, we present the results when using SOOTDIFF
to check if two bytecode classes originate from the same Java
source code. Therefore, we apply SooTDIFF on the bytecode
generated by different Java compilers and for different Java
versions. As Java source code examples, we use the Java
sample programs provided by the University of Illinois 7],
which cover most features of the Java library classes. To
generate the test cases shown in Table 1, we compile the
Java source code using the compilers javac, ecj, gcj for the
language versions 1.5 to 1.8. As reference bytecode classes,
we generate bytecode for Java 1.8 using javac.

8https://commons.apache.org/proper/commons-lang/apidocs/org/
apache/commons/lang3/builder/DiffBuilder.html

Andreas Dann, Ben Hermann, and Eric Bodden

Java Source

I 4.Myers Diff :
! | DN o DN
compiler 1 L[JiM] e | JiM] |
| | ple| == | ple |
compiler 2 L=y -

i 1.Soot — Jimple Transformation
T 1 ree=—— =
|| Initial Constant Dead Uncond. : : String |
I Jimple Prop. Code Branch Optimizer | |
: p P - P I
: 2. Soot Optimizer : : 3. Further |

____________________ ~ o Optimizer _|

Figure 4. Overview of SOoTDIFF’s approach

In our evaluation, we compare the diff-results gained from
comparing the different bytecode directly against the diff-
results produced by SoorD1rF. To compare the "plain" byte-
code of two classes, we first parse the generated bytecode and
generate a textual representation using ASM’s org.object-
web.asm.util.TraceClassVisitor. Afterwards, we com-
pare the textual representations generated by the Trace-
ClassVisitor using the established diff library com. github.
difflib.DiffUtils. Thereby, we ignore the Java language
version information contained in the bytecode. To back up
our results, we (re-)validate them running the Unix tool diff
on the binary files.

To compare the Jimple code generated by SooTDIFF, we
apply SooTDIFF on the generated bytecode classes and cre-
ate diff chunks using Myers’ diff algorithm. We report two
classes as equal if SooTDIFF does not report any diff chunks.

Table 1 shows the results of our comparison. The table
highlights in green the test cases for which the bytecode
comparison fails but SooTDI1FF produces correct results. The
table shows that for only 58 out of 144 test cases the bytecode
comparison bytecode succeeds, although we ignore the Java
version information in the generated .class files. Conse-
quently, the generated bytecode contains more differences
than the Java version, which validates our initial assumption
that different compilers produce different bytecode for the
same source code. In contrast, the table also shows that for
102 out of 144 test cases the comparison of the Jimple code
succeeds. Even without any Jimple optimization steps, 66
test cases succeed.

The test case DivBy®@ fails because javac and ecj opti-
mize unused local differently, as shown in Figure 5a-5c. The
bytecode generated by ecj optimizes the assignment to the
variable i in Figure 5a in Line 6, whereas the javac leaves the
assignment unchanged in Line 6 in Figure 5b. Since the di-
vide instruction may throw an ArithmeticException Soot
does not remove the assignment statement.

The further 36 test cases fail because ecj and javac op-
timize control structures differently, leading to a different
organization of basic blocks and branch instructions. For in-
stance, the test case KeyboardReader contains a while loop

https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/builder/DiffBuilder.html
https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/builder/DiffBuilder.html

SootDiff

SOAP ’19, June 22, 2019, Phoenix, AZ, USA

Table 1. Comparison results based on bytecode/Jimple

javac ecj gcj
1.5 1.6 1.7 1.5 1.6 1.7 1.8 1.5 1.6
ArrayDemo.java X/@ V/@ V/@ X0 X0 X/O X/O X0 X/O
DivBy0.java v/@ V/@ J//@ X0 X0 X/O X/O X0 X/O
FunctionCalljava v/@ V/@ J//@ X® X® X@® X@ X® X/®
HelloDatajava v/@ V/@ J//@ /e Ve Ve Ve /e /e
HelloWorldjava v/@ V/@ /@ /e Ve Ve Ve /e /e
HelloWorldExceptionjava /@ V/®@ //@® /e Ve Ve JV/e /e /e
KeyboardIntegerReaderjava X/@® V/@ J//@ X0 X0 X/O X/O X0 X/O
KeyboardReaderErrorjava X/@ V/@ J//@ X0 X0 X0 X/O X0 X/O
KeyboardReaderjava X/@ V/@ V/@ X0 X0 XO X/O X0 X/O
MyFileReaderjava X/@ V/@ V/@ XIO X/IO X0 X/O X0 X/O
MyFileWriterjava X/@ V/@ V/@ XIO X0 X0 X/O X0 X/O
Point2d.java X/@ V/@ J//@® X® X® X@® X@ X® X/®
Point3djava v/@ V/@ /@ X® X® X@® X@ X® X/®
PointerTesterjava v/®@ V/®@ V//@ X® X® X@® X® X® X/®
PointerTester$Point2d.java X/@® V/@ J//@® X® X® Xe® Xe@ X® X®
PointerTester$Point3d.java v/@ V/@ //@ X® X® X@ X® X® X/®

! results are in the form bytecode/Jimple
2 bytecode: fail X/ success v/, Jimple: fail O/ success ®
3 Sample Java Classes from the University Illinois [7]

4 The bytecode comparison ignores the different bytecode version number in the generated .class files.
5 Highlighted in green where SootDiff comparison succeeds but the Bytecode differs.

1 void funct2(){
2 println("");

1 void funct2(){
2 int i2;

1 void funct2(){
2 PrintStream $ro;

3int i, j, k; 3 PrintStream $ro; 3 $ro=PrintStream.out;
41 =10; 4 $ro=PrintStream.out; 4 invoke $ro.<println>;
5j = 0; 5 invoke $r@.<println>; 5 return;}
6k =1i/3;% 6i2 =10 / 0;

7return;} (c) Jimple from byte-
(a) Java DivBy0 code generated with

(b) Jimple from byte-
code generated with
Jjavac target ver. 1.8

ecj target ver. 1.8

Figure 5. Compiler Optimizations:javac vs. ecj

that depends on a condition of the form while z != @.
Javac transforms this condition to an conditional jump of
the form if z == 0 goto end of loop, whereas the ecj
generates a conditional jump of the form if z!=0 goto
loop. Currently, we do not provide an optimization step in
SootDIrr for these differences.

5 Related Work

Finding equal or similar parts within source code is a well-
known problem called code clone detection. The level of code
similarity is categorized into three different types taken from
Koschke [10].

Type 1 clones are an exact copy of the original code with-
out modifications, except for whitespaces and comments.
Type 2 clones are syntactically identical copies with only

slight renaming, e.g., renaming variables or function iden-
tifiers. Type 3 clones are copies with further modifications,
e.g., addition or deletion of statements.

Selim et al. [17] present an approach that is similar to
SooTDIFF from a technical point of view; like SOoTDIFF
they use Soot’s intermediate representation Jimple to detect
Type 3 source code clones. As an input, the approaches solely
uses Java source code files to produce Jimple code. To detect
clones, they apply existing Java Source clone detection tools
on the Jimple representation. For reporting detected clones
to users, they map the results from Jimple back to Java.

While the presented approach is similar to SooTDIFF,
there exist significant differences. First, we assume that no
Java sources are available, and thus we solely work on byte-
code. Second, we do not run existing code clone detection
tools for source code but tailored the comparison to Jimple
itself. Third, we do not aim to detect Type 3 clones but aim
to detect if two bytecode classes, which may have been gen-
erated by different Java compiler, originate from the same
source code. Consequently, we cannot rely on existing source
code clone detection techniques.

Bytecode Clone Detection Baker and Manber [1] present
a clone detection approach based on disassembled bytecode
using the tools Siff, Dup, and Diff. Thus, the presented ap-
proach reports the clone detection results based on untyped
stack-based bytecode. In contrast, SOOTDIFF uses Jimple to
detect equal classes and methods, which is a typed three-
address code, and thus closer to source code than bytecode.
Thus, the results are easier to understand and interpret from

SOAP 19, June 22, 2019, Phoenix, AZ, USA

a developer’s perspective. Moreover, the comparison based
on Jimple, as well as Soot’s optimization steps allow us to
reduce dissimilarities introduces by different Java compilers,
and thus enables clone detection across compilers.

Source Code Clone Detection Several approaches for dif-
ferent programming languages exist that aim to detect clones
in source code [4, 8, 9, 13].

To this end, these approaches apply different clone detec-
tion techniques on the source code directly, e.g., string-based,
token-based, abstract syntax tree (AST-)based, metric-based,
etc. [10, 16]. In contrast, SOOTDIFF uses the Jimple interme-
diate representation since we aim to detect if the bytecode
of two bytecode artifacts is equal even if no source code is
available. While the source code of classes can be recovered
successfully using decompilers, which makes existing source
code clone detections applicable, the source code obtained
from a decompiler does not benefit from the simplifications
and optimizations the intermediate representations Jimple
offers, e.g., reduced instruction set.

6 Conclusion

In this paper, we present SOoTDIFF, an approach to compare
the bytecode generated by different Java compilers based on
Soot’s intermediate representation Jimple. For the compari-
son of the parsed Jimple representation, we rely on the estab-
lished Myers’ diff algorithm. Although SooTDIFF currently
uses only a String optimization step in combination with
Soot’s default optimizers, e.g., dead code eliminators, our
evaluation shows that SooTDIFF produces promising results.
However, our results also show that further optimization
steps that reduce dissimilarities, e.g., the organization of ba-
sic blocks and control structures, will improve the detection
of code clones further. In the future, we plan to add additional
optimization and unification steps to improve SOOTDIFF’s
performance. Finally, we plan to use more advanced code
clone detection techniques in addition to Myers’ algorithm.

References

[1] Brenda S. Baker and Udi Manber. 1998. Deducing Similarities in Java
Sources from Bytecodes. In Proceedings of the Annual Conference on
USENIX Annual Technical Conference (ATEC ’98). USENIX Association,
Berkeley, CA, USA, 15-15. http://dl.acm.org/citation.cfm?id=1268256.
1268271

[2] V. Bauer, L. Heinemann, and F. Deissenboeck. 2012. A structured
approach to assess third-party library usage. In 2012 28th IEEE Inter-
national Conference on Software Maintenance (ICSM). 483-492. https:
//doi.org/10.1109/ICSM.2012.6405311

[3] Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco
Oliveto, and Sebastiano Panichella. 2015. How the Apache commu-
nity upgrades dependencies: an evolutionary study. Empirical Soft-
ware Engineering 20, 5 (oct 2015), 1275-1317. https://doi.org/10.1007/
s10664-014-9325-9

[4] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna,
and Lorraine Bier. 1998. Clone Detection Using Abstract Syntax Trees.
In Proceedings of the International Conference on Software Maintenance

[5

—

G

—

[7

—

(8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

Andreas Dann, Ben Hermann, and Eric Bodden

(ICSM *98). IEEE Computer Society, Washington, DC, USA, 368—-. https:
//doi.org/10.1109/ICSM.1998.738528

Leonid Glanz, Sven Amann, Michael Eichberg, Michael Reif, Ben
Hermann, Johannes Lerch, and Mira Mezini. 2017. CodeMatch: Ob-
fuscation Won’T Conceal Your Repackaged App. In Proceedings of
the 2017 11th Joint Meeting on Foundations of Software Engineer-
ing (ESEC/FSE 2017). ACM, New York, NY, USA, 638-648. https:
//doi.org/10.1145/3106237.3106305

Lars Heinemann, Florian Deissenboeck, Mario Gleirscher, Benjamin
Hummel, and Maximilian Irlbeck. 2011. On the Extent and Nature
of Software Reuse in Open Source Java Projects. In Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics), Klaus Schmid (Ed.).
Vol. 6727 LNCS. Springer, Berlin, Heidelberg, Berlin, Heidelberg, 207-
222. https://doi.org/10.1007/978-3-642-21347-2_16

Prof. Robert H. (Bob) Sloan University Illion. [n.d.]. Java Example
Program. Retrieved 2019-03-16 from https://www.cs.uic.edu/~sloan/
CLASSES/java/

J. Howard Johnson. 1994. Substring matching for clone detection and
change tracking. In Proceedings International Conference on Software
Maintenance ICSM-94. IEEE Comput. Soc. Press, 120-126. https://doi.
org/10.1109/ICSM.1994.336783

T. Kamiya, S. Kusumoto, and K. Inoue. 2002. CCFinder: a multilinguistic
token-based code clone detection system for large scale source code.
IEEE Transactions on Software Engineering 28, 7 (jul 2002), 654-670.
https://doi.org/10.1109/TSE.2002.1019480

Rainer Koschke. 2007. Survey of Research on Software Clones. In
Duplication, Redundancy, and Similarity in Software (Dagstuhl Semi-
nar Proceedings), Rainer Koschke, Ettore Merlo, and Andrew Walen-
stein (Eds.). Internationales Begegnungs- und Forschungszentrum fiir
Informatik (IBFI), Schloss Dagstuhl, Germany, Dagstuhl, Germany.
http://drops.dagstuhl.de/opus/volltexte/2007/962

Raula Gaikovina Kula, Daniel M. German, Ali Ouni, Takashi Ishio,
and Katsuro Inoue. 2018. Do Developers Update Their Library
Dependencies? Empirical Softw. Engg. 23, 1 (Feb. 2018), 384-417.
https://doi.org/10.1007/s10664-017-9521-5

Patrick Lam, Eric Bodden, Ondrej Lhotak, and Laurie Hendren. 2011.
The Soot framework for Java program analysis: a retrospective. Ce-
tus ’11 October 2011 (2011). https://sable.github.io/soot/resources/
Iblh11soot.pdf

Mayrand, Leblanc, and Merlo. 1996. Experiment on the automatic
detection of function clones in a software system using metrics. In
Proceedings of International Conference on Software Maintenance ICSM-
96. IEEE, 244-253. https://doi.org/10.1109/ICSM.1996.565012
Eugene W. Myers. 1986. An O(ND) difference algorithm and its vari-
ations. Algorithmica 1, 1-4 (nov 1986), 251-266. https://doi.org/10.
1007/BF01840446

Oracle Corporation. [n.d.]. The Java programming language Compiler
Group. Retrieved 2019-03-16 from http://openjdk.java.net/groups/
compiler/

Chaiyong Ragkhitwetsagul, Jens Krinke, and David Clark. 2018. A
Comparison of Code Similarity Analysers. Empirical Softw. Engg. 23, 4
(aug 2018), 2464-2519. https://doi.org/10.1007/s10664-017-9564-7
Gehan M.K. Selim, King Chun Foo, and Ying Zou. 2010. Enhancing
Source-Based Clone Detection Using Intermediate Representation. In
2010 17th Working Conference on Reverse Engineering. IEEE, 227-236.
https://doi.org/10.1109/WCRE.2010.33

Raja Vallée-Rai and Laurie Hendren. 1998. Jimple: Simplifying Java
Bytecode for Analyses and Transformations. Technical Report. McGill
University, Montreal, Canada. 1-15 pages. http://www.sable.mcgill.
ca/publications/techreports/sable-tr-1998-4.ps

http://dl.acm.org/citation.cfm?id=1268256.1268271
http://dl.acm.org/citation.cfm?id=1268256.1268271
https://doi.org/10.1109/ICSM.2012.6405311
https://doi.org/10.1109/ICSM.2012.6405311
https://doi.org/10.1007/s10664-014-9325-9
https://doi.org/10.1007/s10664-014-9325-9
https://doi.org/10.1109/ICSM.1998.738528
https://doi.org/10.1109/ICSM.1998.738528
https://doi.org/10.1145/3106237.3106305
https://doi.org/10.1145/3106237.3106305
https://doi.org/10.1007/978-3-642-21347-2_16
https://www.cs.uic.edu/~sloan/CLASSES/java/
https://www.cs.uic.edu/~sloan/CLASSES/java/
https://doi.org/10.1109/ICSM.1994.336783
https://doi.org/10.1109/ICSM.1994.336783
https://doi.org/10.1109/TSE.2002.1019480
http://drops.dagstuhl.de/opus/volltexte/2007/962
https://doi.org/10.1007/s10664-017-9521-5
https://sable.github.io/soot/resources/lblh11soot.pdf
https://sable.github.io/soot/resources/lblh11soot.pdf
https://doi.org/10.1109/ICSM.1996.565012
https://doi.org/10.1007/BF01840446
https://doi.org/10.1007/BF01840446
http://openjdk.java.net/groups/compiler/
http://openjdk.java.net/groups/compiler/
https://doi.org/10.1007/s10664-017-9564-7
https://doi.org/10.1109/WCRE.2010.33
http://www.sable.mcgill.ca/publications/techreports/sable-tr-1998-4.ps
http://www.sable.mcgill.ca/publications/techreports/sable-tr-1998-4.ps

	Abstract
	1 Introduction
	2 Background
	3 Design: SootDiff
	4 Evaluation
	5 Related Work
	6 Conclusion
	References

