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ABSTRACT
Approaches and techniques for statically finding a multitude
of issues in source code have been developed in the past. A
core property of these approaches is that they are usually
targeted towards finding only a very specific kind of issue
and that the effort to develop such an analysis is significant.
This strictly limits the number of kinds of issues that can
be detected.

In this paper, we discuss a generic approach based on
the detection of infeasible paths in code that can discover a
wide range of code smells ranging from useless code that hin-
ders comprehension to real bugs. Code issues are identified
by calculating the difference between the control-flow graph
that contains all technically possible edges and the corre-
sponding graph recorded while performing a more precise
analysis using abstract interpretation.

We have evaluated the approach using the Java Develop-
ment Kit as well as the Qualitas Corpus (a curated collection
of over 100 Java Applications) and were able to find thou-
sands of issues across a wide range of categories.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

Keywords
Java, Finding Bugs, Scalable Analysis, Abstract Interpreta-
tion, Infeasible Paths

1. INTRODUCTION
Since the 1970s many approaches have been developed

that use static analyses to identify a multitude of different
types of issues in source code [9, 3, 15, 11]. These approaches
use very different techniques that range from pattern match-
ing [9] to using formal methods [11] and have very different
properties w.r.t. their precision and scalability. But, they all
have in common that they are each targeting a very specific

kind of issues. Those tools (e.g., FindBugs [9]) that can iden-
tify issues across a wide(r) range of issues are typically suits
of relatively independent analyses. This limits the number
of issues that can be found to those that are identified as
relevant by the respective researchers and developers.

In this paper, we present a generic approach that can de-
tect a whole set of control- and data-flow dependent issues in
Java bytecode without actually targeting any specific kind of
issues per se. The approach applies abstract interpretation
to analyze the code as precisely as possible and while doing
so records the paths that are taken. Afterwards, the analysis
compares the recorded paths with the set of all paths that
could be taken according to a näıve control-flow analysis
that does not consider any data-flows. The paths computed
by the latter analysis but not taken by the former analysis
are then reported along with a justification why they were
not taken.

The rationale underlying this approach is as follows. Many
issues such as null dereferences, array index out of bounds
accesses or failing class casts result in exceptions that leave
infeasible paths behind. Hence, the hypothesis underlying
the approach is threefold. First, in well-written code every
path between an instruction and all it’s direct successors
is eventually taken, and, second, a path that will never be
taken indicates an issue. Third, a large class of relevant
issues manifests itself sooner or later in infeasible paths.

To validate the hypotheses we conducted a large-scale case
study analyzing the Java Development Kit (JDK 1.8.0 25).
Additionally, we did a brief evaluation of the approach us-
ing the Qualitas Corpus[22] to validate the conclusion drawn
from the case study. The issues that we found range from
seemingly benign issues to serious bugs that will lead to ex-
ceptions at runtime or to dead features. However, even at
first sight benign issues, such as unnecessary checks that
test what is already guaranteed, can have a significant im-
pact. Manual code reviews are a common practice and the
biggest issue in code reviews is comprehending the code [5].
A condition that always evaluates to the same value typ-
ically violates a reviewer’s expectation and hence impedes
comprehension causing real costs.

The analysis was explicitly designed to avoid false posi-
tives. And, yet it identified a large number of dead paths
(≈ 50% of all identified dead paths), which do not relate to
issues in the source code. This is because the analysis op-
erates on byte code and is as such sensitive to compilation
techniques and a few other intricacies of the language. To
make the tool useable [16, 7], we implemented and evaluated
three heuristics to filter irrelevant issues.
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Though we opted for analyzing the code as precisely as
possible, we deliberately limited the scope of the analysis by
starting with each method of a project then performing a
context-sensitive analysis with a very small maximum call
chain size. This makes the analysis unsound – i.e. we may
miss certain issues – but it enables us to use it for large
industrial sized libraries and applications such as the JDK.
As the evaluation shows, the approach is effective and can
identify a wide range of different issues while suppressing
over 99% of all irrelevant findings.1

To summarize, we make the following contributions:

• We put forward the idea that infeasible paths in soft-
ware are a good indication for issues in code and show
that a large class of relevant issues does manifest itself
sooner or later in infeasible paths.

• We present a new static analysis technique that ex-
ploits abstract interpretation to detect infeasible paths.
The analysis is parametrized over abstract domains
and the depth of call chains to follow inter-procedurally.
These two features enable us to make informed rea-
sonable trade-offs between scalability and soundness.
Furthermore, the analysis has an extremely low rate
of false positives.

• We validate the claims about the proposal in a case
study of industrial size software; the issues revealed
during the case study constitute themselves a valuable
contribution of the paper.

The paper is structured as follows. In Section 2 we discuss
a selection of issues that we were able to find. After that, we
discuss the approach in Section 3 along with its implemen-
tation. The evaluation is then presented in Section 4. The
paper ends with a discussion of related work in Section 5
and a conclusion thereafter.

2. CLASSIFICATION OF ISSUES
In this section, we discuss the kind of issues that we found

by applying our analysis to the JDK 1.8.0 252. Given that
the approach is not targeted towards finding any specific cat-
egory of issues, it is very likely that further categories emerge
from investigating the results of applying the analysis to
other projects. Yet, the following list already demonstrates
the breadth of the applicability of the proposed approach.

Obviously Useless Code.
In some cases, we were surprised to find code that is ob-

viously useless in such a mature library as JDK.
For illustration consider the code in Listing 1. In the

method isInitValue, the developer checks whether an int
variable contains a value that is smaller/larger than the
smallest/largest possible value, which is obviously false and
does not need to be checked for. Such useless code has two
problems. First, it wastes resources. More importantly, it
negatively impacts reasoning from the perspective of code
that uses isInitValue. A developer has to understand that
a call to isInitValue always returns true. This is most

1The tool and the data set are available for download at
www.opal-project.de/tools/bugpicker.
2Some of the code samples shown in the following are ab-
breviated to better present the underlying issue.

likely not obvious in the context of the calling method, as
isInitValue suggest something different.

252 boolean isInitValueValid(int v) {
253 if ((v < Integer.MIN VALUE) || (v > Integer.MAX VALUE)) {
254 return false;
255 }
256 return true;
257 }

Listing 1: Obviously useless code in com.sun.jmx.-

snmp.SnmpInt.isInitValueValid

Confused Conjunctions.
The binary conjunction operators in Java (|| and &&) are

a steady source of logic confusion not only for novices but
also for experienced developers. Confusing them will either
lead to an expression that is overly permissive or one that
is overly restrictive compared to the original intent.

1842 if (maxBits > 4 || maxBits < 8) {
1843 maxBits = 8;
1844 }
1845 if (maxBits > 8)
1846 maxBits = 16;
1847 }

Listing 2: Confused || conjunction in com.sun.-

imageio.plugins.png.PNGMetadata.mergeStandardTree

In the example in Listing 2, a variable maxBits is checked
if it is greater than 4 or (operator ||) less than 8. This is
always true as the partial expressions overlap. As a result,
the maxBits variable is always set to 8 rendering the follow-
ing check (Line 1845) useless. In this example, the developer
probably wanted to use the && operator instead.

337 if (ix<0 && ix>=glyphs.length/∗length of an array >= 0∗/) {
338 throw new IndexOutOfBoundsException(”” + ix);
339 }

Listing 3: Confused && conjunction in sun.font.-

StandardGlyphVector.getGlyphCharIndex

In Listing 3 we have the dual situation. Here, the devel-
oper probably wanted to use || instead of &&. Currently,
the condition – as a whole – will always evaluate to false; an
integer variable (ix) can never contain a value that is at the
same time less than zero and also larger or equal to zero.
Currently the precondition check is useless and ix could ex-
ceed the array’s length or even be negative. In general, such
useless pre-condition/post-condition checks may lead to de-
ferred bugs at runtime which are hard to track down. For
example, imagine that ix is just stored in a field for later
usage and at runtime some other method uses it and fails
with an exception. At that point-in-time the method that
caused ix to contain an invalid value may no longer be on
the stack and is therefore typically hard to identify.

In general confused conjunctions can render pre- or post-
condition checks ineffective or mask paths that are necessary
for correct behavior.

Confused Language Semantics.
The semantics of Java’s instanceof check is in border-

line cases sometimes not well understood. For example, the
instanceof operator will return false, if the value is null.
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381 public boolean containsValue(Attribute attribute) {
382 return
383 attribute != null &&
384 attribute instanceof Attribute &&
385 attribute.equals(...(Attribute)attribute...));
386 }

Listing 4: Instanceof and null confusion in javax.-

print.attribute.HashAttributeSet.containsValue

In the example in Listing 4, the developer first checks
the parameter attribute for being not null. After that
she checks if it is an instance of Attribute. However, the
instanceof operator also checks if the object is not null,
so the first check is redundant. But, given that the declared
type of the parameter is Attribute, the respective value will
always be either an instance of Attribute or null, hence the
not-null check would be sufficient.

A second issue in this category is shown in Listing 5. In
this case the developer checks if a newly created object is
indeed created successfully. This is, however, guaranteed
by Java’s language semantics. In this case the developer
most likely had a background in programming using the C
family of languages where it is necessary to check that the
allocation of memory was successful.

288 doc = new CachedDocument(uri);
289 if (doc==null) return null; // better error handling needed

Listing 5: New objects are never null in com.sun.-

org.apache.xalan.internal.xsltc.dom.DocumentCache

Instances of this category usually lead to redundant code
that is detrimental to comprehensibility of the program.

Dead Extensibility.
Programmers may deliberately introduce temporary infea-

sible paths into code when programming for features that are
expected to be used in the future. However, in some cases
the implementation of a feature is aborted but no clean-up
is done; leaving behind dead code. For example, a method
that was defined by an interface with a single implementa-
tion and where the implementation of that method returns
a constant value is an instance of dead extensibility.

We classify issues as belonging to dead extensibility only if
(a) the package is closed for extension (e.g, everything in the
com.sun.* or sun.* packages), (b) the development of the
respective code is known to have ended (e.g., javax.swing.*)
or (c) we find an explicit hint in the code.

189 // For now we set owner to null. In the future, it may be
190 // passed as an argument.
191 Window owner = null;

198 if (owner instanceof Frame) { ... }

Listing 6: Infeasible paths from unused extensibility
(taken from javax.print.ServiceUI.printDialog)

For example, in Listing 6 the variable owner is set to null

but later on checked for being of type Frame. This will al-
ways fail as discussed previously. Here, the comment in the
code however identifies this issue as a case of programming
for the (now defunct) future.

Another instance of this issue can be found in java.-

util.concurrent.ConcurrentHashMap.tryPresize. In that
case our analysis identified that a variable (called sc) always
has the value 0 which leads to a decent amount of complex

dead code. Given the complexity of the code we directly
contacted one of the developers and he responded: “Right.
This code block deserves a comment: It was not always un-
reachable, and may someday be enabled ...”.

In general dead extensibility primarily hinders compre-
hension; sometimes to a highly significant level as in the
last case. Additionally, it may lead to wasted efforts if the
code is maintained even though it is dead [13].

Forgotten Constant.
In case the declaration of a local variable and its first use

are very distant, developers might have already forgotten
about its purpose and value and assume that its value can
change even though it is (unexpectedly) constant.

For example, in javax.swing.SwingUtilities in method
layoutCompoundLabelImpl a variable called rub is set to
zero and never touched over more than 140 lines of code.
Then the variable is used in an expression where it is checked
for being larger than zero and, if so, is further accessed. But,
that code is never executed.

Issues in this category are often a hint to methods that
need to be refactored because they are very long and hard to
comprehend. Overall these issues are also causing maintain-
ability problems, because they are hindering comprehension
and the resulting dead code still is/needs to be maintained.

Null Confusion.
The most prevailing category of issues that our analysis

discovered in the JDK is related to checking reference values
for being (non)-null. The issues in this category can further
be classified into two sub-categories: (a) unnecessary checks,
which do not cause any immediate harm, and (b) checks that
reveal significant issues in the code. We don’t consider this
distinction in the following sections because both categories
are very relevant to developers [4].

An example of an issue of the first sub-category is a non-
null check of a value stored in a (private and/or final)
field that is known to only contain non-null values. An-
other instance is shown in Listing 7 - the variable atts is
checked for being non-null and an exception is thrown if the
check fails. Later in the code (Line 227 - not shown here)
the variable is, however, checked again for being non-null,
resulting in an infeasible else path.

211 if (atts != null)
212 types.add(att);
213 else
214 throw new IOException(paramOutsideWarning);

Listing 7: Ensuring non-nullness in javax.-

management.loading.MLetParser.parse)

Issues of the second sub-category are those where a non-
null check is done after the reference was already (tried to
be) dereferenced. An example of the latter category is shown
in Listing 8. In this case, either the check is redundant or
the code may throw NullPointerExceptions at runtime.

372 int bands = bandOffsets.length;
373 ... // [bandOffsets is not used by the next 6 lines of code]
374 if (bandOffsets == null)
375 throw new ArrayIndexOutOfBoundsException(”...”);

Listing 8: Late null check (taken from java.awt.-

image.Raster.createBandedRaster)
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Range Double Checks.
We classify issues as range double checks if the range of a

value is checked multiple times in a row such that subsequent
checks are either just useless or will always fail. As in case
of Null Confusion issues, such issues are benign if they are
related to code that is just checking what is already known.
However in other cases (more) significant issues may be re-
vealed.

An issue of the first category is shown in Listing 9. Here,
the variable extendableSpaces is first checked for being zero
or less (Line 1095) and if so the method is aborted. Later
on the dual check (Line 1097) is unnecessarily repeated.

1095 if (extendableSpaces <= 0) return;
1096 int adjustment = (targetSpan − currentSpan);
1097 int spaceAddon = (extendableSpaces > 0) ?
1098 adjustment / extendableSpaces : 0;

Listing 9: Useless range check in javax.swing.text.-

ParagraphView$Row.layoutMajorAxis

An issue of the second category is shown in Listing 10.
Here, the value of the variable jcVersion is first checked for
being equal or larger than the constant JAVA_ENC_VERSION,
which has the value 1. After that, the variable is checked
again for being larger than the constant CDR_ENC_VERSION,
which is 0. Hence, both checks are equivalent, but the code
that is executed in both case clearly differs which makes it
likely that it is incorrect.

331 byte jcVersion = jc.javaSerializationVersion();
332 if (jcVersion >= Message.JAVA ENC VERSION) {
333 return Message.JAVA ENC VERSION;
334 } else if (jcVersion > Message.CDR ENC VERSION) {
335 return jc.javaSerializationVersion();
336 } ...

Listing 10: Contradicting range checks in com.sun.-

corba.se.impl.orbutil.ORBUtility

Type Confusion.
Names of methods often explicitly or implicitly suggest

that the handled or returned values have a specific type and
that specific type casts are therefore safe. This, however,
can be misleading and lead to runtime exceptions.

For example, the method createTransformedShape shown
in Listing 11 suggests that a transformed version of the
Shape object is returned that has been passed to it. How-
ever, the method always returns an instance of Path2D.-

Double. Now the method getBlackBoxBounds which is de-
fined in java.awt.font.TextLayout calls createTranformed-
Shape passing an instance of GeneralPath and casts the re-
sult to the very same type. This will always result in an ex-
ception as GeneralPath is not a subtype of Path2D.Double.

3825 public Shape createTransformedShape(Shape pSrc) {
3826 if (pSrc == null) { return null; }
3827 return new Path2D.Double(pSrc, this);
3828 }

Listing 11: Confusing implicit contract leading to
a type confusion in java.awt.geom.AffineTransform.-

createTransformedShape

Unsupported Operation Usage.
If a method is called that always just throws an excep-

tion and that exception causes the calling method to also

behave abnormally then we considered the related issues as
Unsupported Operation Usage. Consider for example the
code shown in Listing 12. Here, the extract method calls
the read method, which always throws an exception. This
results in two issues: First, both methods cannot be called
without triggering an exception that disrupts the control
flow. Second, the extract method calls the create_input_-
stream method which is afterwards not further used and –
in particular – not closed.

29 static CodecFactory extract (org.omg.CORBA.Any a) {
30 return read (a.create input stream ());
31 }
32 static CodecFactory read (InputStream istream){
33 throw new org.omg.CORBA.MARSHAL ();
34 }

Listing 12: A method always throwing an exception
in org.omg.IOP.CodecFactoryHelper

In such cases the code often seems to be in a state of flux
where it is unclear what has happened or will happen.

Unexpected Return Value.
We found some cases where the name of a method suggests

a specific range of return values – in particular if the name
starts with is. In this case, Java developers generally expect
that the set of return values is {true, false} and write
corresponding code. This will, however, directly lead to dead
code if the called method always returns the same value. A
concrete example is shown in Listing 13. Here, the developer
calls a function isUnnecessaryTransform and, if true sets
the used transformer to null. However, this code is dead
because the called method, which is shown in Listing 14,
always returns false.

746 if (isUnnecessaryTransform(...)) {
747 conn.getDestination().setTransform(null);
748 }

Listing 13: Dead code due to a bug in the called
method; found in com.sun.media.sound.SoftPerformer

761 static boolean isUnnecessaryTransform(... transform){
762 if(transform == null) return false;
763 ... // [the next four tests also just return false]
764 return false;
765 }

Listing 14: The result is always false in com.sun.-

media.sound.SoftPerformer

As demonstrated by the code in Listing 13, these issues
are typically related to significant problems in the respec-
tive code. The example indicates that an inter-procedural
analysis is required to discover such issues.

3. THE APPROACH
As described in the introduction, we are able to identify

the issues presented in the previous section using a generic
approach that relies on the detection of dead paths. The ap-
proach’s three main building blocks: the generic detection of
dead paths, the underlying analysis and the post-processing
of issues to filter irrelevant ones is presented in the following.

3.1 Identifying Infeasible Paths
To identify infeasible paths in code, we first construct a

control-flow graph, denoted CFG, for each method. The
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CFG contains all possible control flow edges that may occur
during the execution if we do not consider any data flows. In
a second step, we perform an abstract interpretation (AI) of
the code, during which a second flow graph is implicitly gen-
erated and which consists of the edges taken during the AI.
We denote this flow graph AIFG in the following. The AIFG
is potentially more precise than the CFG because the under-
lying analysis is context- and data-flow sensitive. Hence, if
the AIFG contains fewer edges than the CFG then some
paths in the CFG are not possible. Consider for illustra-
tion a conditional branch expression (e.g., if, switch). The
CFG of such an expression contains an edge to the first in-
struction of each branch. On the contrary, the AIFG will
not contain edges from the condition instruction to those
branches, whose guarding condition cannot be the result of
evaluating the condition, according to the AI.

Given a method’s AIFG and CFG, we remove the edges
of the former from the latter. The source instruction of the
first edge of every remaining path in the CFG is reported to
the developer, as it is directly responsible for an infeasible
path. This instruction is the last executed one and is called
the guard instruction. More precisely, the algorithm to de-
tect infeasible paths is shown in Listing 15. Given a method

(Line 1) and the result of its AI (Line 2), the algorithm iter-
ates over each instruction, instr, of method (Line 4) testing
whether it was evaluated (Line 5). If instr was executed, we
iterate over all possible successors and check whether each
expected path was taken (Line 7); if not, instr is a guard
instruction and a report is generated which describes which
path is never taken and why. If instr was not executed,
it cannot be a guard instruction and the iteration continues
with the next instruction.

1 val method : Method { val instructions : Array[Instruction] }
2 val result : AIResult { val evaluated : Set[Instruction] }
3 for {
4 instr <− method.instructions
5 if result.wasEvaluated(instr)
6 staticSuccInstr <− instr.successors // static CFG
7 if !result.successorsOf(instr).contains(staticSuccInstr)
8 } yield { /∗ rank and create error report w.r.t. instr ∗/ }

Listing 15: Detecting Infeasible Edges

1

2

3

4

5

6
Exit

Guards 

Figure 1: A CFG vs. an AIFG.

Consider for further illustration the graph shown in Fig-
ure 1. Each node in the graph represents an instruction in
some piece of code, its edges represent the set of control-
flows in the CFG. Now, let us assume that – by performing
an abstract interpretation of the respective code – we can
determine that the instructions 4, 5 and 6 are never ex-
ecuted and, hence, that the control-flow paths [2→4→6],
[2→4→5→6], [3→4→6] and [3→4→5→6] are infeasible. In
this case, the analysis will create one report for the guard
instruction 2 and one for guard instruction 3.

To illustrate how the technique reveals issues presented
in the previous section, we apply it to a concrete example.

1: public static X doX(SomeType[] array){
2:     if (array != null || array.length > 0) {(a) }
5:     // … (b)
6: }// (ex)

ifnonnull array arraylength array ifgt (>0)

(a)

(b) (ex)

(B) Corresponding CFG

true true false

false

(A) Java Source Code.

ifnonnull array arraylength array ifgt (>0)

(a)

(b) (ex)

(C) Computed AIFG

true true false

false

relevant missing edge
a missing edge

Java Bytecode 

Java Bytecode 

:- array is null

:- array not null

Figure 2: The Approach Exemplified.

The issue under consideration that we found multiple times
in the JDK is the use of the wrong logical operator (e.g.,
||) in combination with a null check. The code in Fig-
ure 2(A) (Line 2) exemplifies this issue. The method doX

will always fail with a NullPointerException, if the given
array is null, because length is not defined on null val-
ues. Given the check of array against null that precedes
the field access array.length, we assume that the developer
actually intended to use the logical and operator (&&) instead
of || to avoid the runtime exception. This issue is identi-
fied by our analysis because the AI determines the nullness
property of reference values. When the analysis of the null

check is performed, a constraint is created (cf. Figure 2(C))
that states that array is null if the test ifnonnull fails
and vice versa. Now, the AI will – when it evaluates the
arraylength instruction – always only follow the exception
path and will never evaluate the ifgt instruction and the in-
structions dominated by it. The generated report will state
that the predecessor instruction of ifgt, the arraylength

instruction, is the root cause of the issue, as it always throws
a NullPointerException.

3.2 The Abstract Interpretation Analysis
The analysis that performs the abstract interpretation is

built on top of OPAL [14] - an abstract interpretation frame-
work for Java Bytecode implemented in Scala.

Central to our idea is that the abstract interpretation does
not pursue any specific goal – it simply tries to collect as
much information as possible; the identification of infeasible
paths is a side effect of doing so. Furthermore, unlike most
abstract interpretation based analyses approaches, our anal-
ysis is not a whole program analysis. Instead, the analysis
treats each method as a potential entry point and makes
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no special assumptions about the overall state or input pa-
rameters. For example, when analyzing a method m(Object

o,int i), no assumptions are made about the parameters o
and i (o could, e.g., be null, an alias for this, or reference
an independent object). For each method, we perform an
inter-procedural, path-, flow-, object- and context-sensitive
analysis, however, only up to a pre-configured – typically
very small – call chain length.

The rationale for the above design decisions is twofold:
(a) to make the approach useable for analyzing libraries,
and (b) to make it scalable to industrial sized applications.
Libraries do not have a designated main method - any public
method can be an entry point to the library. Hence, our deci-
sion to handle each method in isolation. Our understanding
of a very large codebase is, e.g., the entire JDK 8, which
consists of more than 190,000 concrete methods with more
than 9,000,000 byte code instructions. An approach that
does not restrict the length of call chains to be followed may
find more issues, but does not scale for such codebases as
the effort roughly scales exponentially. So, we deliberately
trade off the number of issues that we find for scalability.
This is a common design decision taken by static analysis
tools [9, 7].

The analysis is designed as a product line, currently cus-
tomizable with respect to: (a) abstract domains used to
represent and perform computations on values, and (b) the
maximum call chain length that the analysis follows.

Customizing the Abstract Domains.
Concerning (a), the current implementation is configured

with the following abstract domains.
(i) For computations on integer values we use a standard

interval domain based on the description found in [19]. Our
domain implements all artihmetical operations supported by
the JVM and facilitates path-sensitive analyses. It is fur-
ther parameterized over the maximum size of the intervals
for which we try to compute the result before the respec-
tive variable is assumed to take any value (the top value in
the abstract domain’s lattice). The parameterization over
abstract domains enables us to adapt the precision of the
analysis and to make it scalable to large code bases. For
example, for the method in Listing 16 the analysis would
compute that the return value is in the range [200, 1000] if
the configured maximum cardinality is larger than 800. If
the maximum is, e.g., 32 the result would be AnyInt (the
top value).

1 int m1(boolean test){
2 int i = 100;
3 if (test) i ∗= 10;
4 else i ∗= 2;
5 return i; // i is a value in the range [200,1000] or ”Any Int”
6 }

Listing 16: Integer Ranges

We could as well use a domain that represents integer
values as sets. In the example above, such a domain could
precisely capture the information that the return value is
either 200 or 1000. However, in a pre-study, we found that
a domain based on ranges is superior in terms of its efficiency
and hence better suited for our setting.

(ii) For the other primitive data types supported by the
Java Virtual Machine (float, long, double), the current
implementation performs all computations at the type level;
hence, currently we cannot identify bugs related to these

values. This limitation, however, is only a matter of putting
more engineering effort, which is currently ongoing.

(iii) The domain for reference values is object-sensitive
and distinguishes objects based on their allocation site. Hence,
for objects created within an analyzed method, we can de-
rive precise type information. The domain also supports
alias and path-sensitive analyses. Currently, this domain
cannot be configured any further.

Customizing the Maximum Call Chain Length.
Let us now consider the second customization dimension

(b); adapting the maximum call chain length. At each call
site, the analysis uses the configured maximal call chain
length to determine whether to make the call. If the length
of the current call chain is smaller than the configured max-
imum, the analysis invokes the called method using the cur-
rent context - however, only if the information about the
receiver type is precise, i.e., the call site is monomorphic. If
we only have an upper type bound for the receiver object
it could happen that a developer overwrites the respective
method later on and would render the analysis unsound.

To illustrate the effect of configuring the call chain length,
consider the code in Listing 17 and assume that the max-
imum call chain length is 2 and the analysis tries to find
issues in method m1. In this case, the method m2 will also be
analyzed with the current context (i <= 0) to find out that
m2 will always throw an exception. However, since the max
call chain length is 2 the constructor call in m2 (Line 7) will
not be analyzed. Hence, the analysis draws no conclusion
about the precise exception that is thrown3.

1 void m1(int i){
2 if(i <= 0 && m2(i) > 1) System.out.println(”success”);
3 else System.out.println(”failure”);
4 }
5 int m2(int i){
6 if(i > 0) sqrt(i);
7 else throw new IllegalArgumentException();
8 }

Listing 17: Example for the effects of call chain
length

We complement the abstract interpretation analysis de-
scribed so far with two simple pre-analyses. Their goal is
to determine precise types for values stored in private vari-
ables respectively of values returned by private methods. In
Java (and other object-oriented) libraries it is common to
use interface types for fields and method return values, even
if these values are actually instances of specific classes. The
pre-analyses that we perform are able to determine the con-
crete types of private fields and of return values of private
methods in 40% of the inspected cases4.

We limit the application of these analyzes to private meth-
ods and fields only to make them useable for libraries. Ex-
tending the scope of the analyses beyond private method-
s/fields may lead to wrong results. A developer, using the
library, may create a new subtype which stores other values
of different kinds in the field or overrides the method re-
turning a different kind of object. This cannot happen with
private fields/methods, both are not accessible in subclasses
and, hence, cannot be changed.

3The constructor of llegalArgumentException may throw
some other exception.
4When analyzing the JDK 1.8.0 Update 25.
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Both pre-analyses are very efficient as they only analyze
one class at a time and perform abstract interpretations of a
class methods using domains that perform all computations
at the type level. However, they still contribute significantly
to the overall power of the analysis w.r.t. identifying issues
in particular if the maximum call chain length is small. If
the call chain length is 1 then 10% of the issues are found
based on the pre-analysis.

3.3 Post-processing Analysis Results
Obviously, it is desirable to minimize the number of false

reports produced by the analysis. However, completely avoid-
ing them is due to the complexities associated with statics
analyses generally not possible. In our setting, we distin-
guish between two kinds of false reports. First, there are
infeasible paths that are correctly identified as such by the
analysis, but which do not hint at issues in the software.
They are rather due to (I) code generated by the compiler,
(II) intricacies of Java and (III) common best practices. We
call reports related to such issues irrelevant reports to in-
dicate that they are not real false reports in the sense of
wrong. Nevertheless, they would be perceived as such by
developers as they would not help in fixing any source code
level issues. Second, there are paths that are wrongly iden-
tified as infeasible. Such paths are due to the imprecision
of the analysis w.r.t. code that uses reflection or reflection-
like mechanisms. In the following, we discuss each source of
false reports and the heuristics used to identify and suppress
them.

Next, we discuss these sources and how we handle them
as part of a post-processing step.

Compiler Generated Dead Code.
The primary case that we identified, where Java compil-

ers implicitly generate dead code, is due to the compila-
tion strategy for finally blocks. The latter are typically
included twice in the byte code, for both cases when an ex-
ception occurred respectively did not occur. This strategy
often results in code that is provably dead, but where there
is nothing to fix at the source code level.

1 void conditionInFinally(java.io.File f) {
2 boolean completed = false;
3 try {
4 f.canExecute();
5 completed = true;
6 } finally {
7 if (completed) doSomething();
8 } }

Listing 18: Implicit dead code in finally

For illustration, consider the code in Listing 18. The if

statement (Line 7) gets included twice in the compiled code.
If an exception is thrown by the canExecute call (Line 4),
completed will always be false. Therefore, the call to do-

Something would be dead code. However, if no exception
is thrown, completed will be true and, hence, the branch,
where completed is false is never taken. Now, to identify
that there are no issues at the source code level, it is neces-
sary to correlate both byte code segments to determine that
both branches are taken. In other words, we have to recreate
a view that resembles the original source code to determine
that there is nothing to fix at the source code level.

To suppress such false warnings, we use the following sim-
ple heuristics. We search in the byte code for a second if

instruction that accesses the same local variable and which
is in no predecessor/successor relation with the currently
considered guard instruction, i.e., both instructions are on
independent paths. After that, we check that one of the
two if instructions strictly belongs to a finally block, i.e.,
we check that the if instruction is dominated by the first
instruction of a finally handler, which the other one is not.

The Intricacies of Java.
In Java, every method must end each of its paths with ei-

ther a return instruction or by throwing an exception. Now,
if a method is called, whose sole purpose is to create and
throw an exception (e.g., doFail in Listing 19), thus inten-
tionally aborts the execution of the calling method (compute
in Listing 19), the calling method still needs to have a return

or throw statement. These statements will obviously never
be executed and, hence, without special treatment would be
reported.

1 Throwable doFail() { throw new Exception(/∗ message∗/); }
2

3 Object compute(Object o) {
4 if(o == null) [ return doFail(); OR throw doFail(); ]
5 else return o;
6 }

Listing 19: doFail() Always Throws an Exception

Such infeasible paths, however, are not related to a fix-
able issue in code and should hence be suppressed. We do
not generate a report if (a) the first instruction of an in-
feasible path is a return or throw instruction and (b) the
guard instruction is a call to a method that always throws
an exception.

Established Idioms.
A source of several irrelevant reports in our study of the

JDK is the common best practice in Java programs to throw
an exception if an unexpected value is encountered in case
of a switch statement. The implementations in these cases
always contain a default branch that throws an error or ex-
ception stating that the respective value is unexpected. A
prototypical example is shown in Listing 20.

1 switch (i) {
2 case 1 : break;
3 // complete enumeration of all cases that should ever occur
4 default : throw new UnknownError();// should not happen
5 }

Listing 20: Infeasible Default Branch

In the JDK we found multiple instances of such code,
which vary significantly. In particular, the exceptions that
are thrown vary widely ranging from UnknownError over Ex-
ception and RuntimeException, to custom exceptions. Fur-
thermore, in several cases the code is even more complex. In
these cases a more meaningful message, which captures the
object’s state, is first created by calling a helper method that
creates it. In some cases that helper method even immedi-
ately throws the exception. To handle all cases in a uni-
form way, we perform a local data- and control-flow analysis
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that starts with the first instruction of the default branch
to determine whether the default branch will always end by
throwing the same exception.

Assertions.
Another source of irrelevant reports related to correctly

identified infeasible edges is code related to assertions. We
found several cases, where we were able to prove that an
assert statement will always hold or where an Assertion-

Error was explicitly thrown on an infeasible path. In the
latter case, the Java code was following the pattern if( /*

condition was proven to be false */ ) throw new As-

sertionError( /*optional message*/ )) and is directly
comparable to the code that is generated by a Java com-
piler for assert statements. As in the previous case, reports
related to such edges are perceived as irrelevant by develop-
ers. We suppress related reports by checking whether an
infeasible path immediately starts with the creation of an
AssertionError.

Reflection and Reflection-like Mechanisms .
Though we tried to reduce the number of false positives

to zero, we found some instances of false positives for which
the effort of programmatically identifying them would by far
outweigh the benefits. In these cases, the respective false
positives are due to the usage of Java Reflection and/or the
usage of sun.misc.Unsafe. Using both approaches it is pos-
sible to indirectly set a field’s value such that the analysis is
not aware of it. For example java.lang.Thread uses Unsafe
to indirectly set the value of the field runner using a mem-
ory address stored in a long variable. Our analysis in this
case cannot identify that the respective field is actually set
to a value that is different from null and hence, creates an
issue related to every test of the respective variable against
null. As the evaluation will show, the absolute and relative
numbers of false positives are so low that the heuristics can
still be considered effective.

4. EVALUATION
We evaluated our analysis by using the approach on the

JDK to (I) get a good understanding of the issue categories
that our analysis can identify and the effectiveness of the
techniques for suppressing false warnings, and (II) to derive
a good understanding of how the maximum call chain length
and the maximum cardinality of integer ranges effects the
identification of issues as well as the runtime. After that, we
applied the approach to the Qualitas Corpus [22] to test its
applicability to a diverse set of applications and to validate
our findings.

4.1 JDK 1.8.0 Update 25

4.1.1 Issue Categories
The issue categories that we identified were discussed in

Section 2. The distribution of the issues across different
categories is shown in Table 1. It was determined by two
of the authors of this paper as well as an advanced student.
They manually evaluated all reported issues in the pack-
ages that constitute the JDK’s public API: java*, org.omg*,
org.w3c* and org.xml*. To achieve a consistent rating of
the issues across all persons, we randomly selected 10% of
all issues and rated them individually. Afterwards the rat-
ings were compared and discussed to get consistent results

when classifying the remaining issues. The analysis was ex-
ecuted using a maximum call chain length of 3 and setting
the maximum cardinality of integer ranges to 32; no upper
bound was specified for the analysis time per method.

Overall 556 reports were related to the public API; in-
cluding the reports that were automatically identified as ir-
relevant because they are expected to belong to compiler
generated dead code, to assertions or to common program-
ming idioms. All 556 reports were manually inspected to
check for false positives, to classify the reports and to assess
the filtering mechanism. In the results of the analysis we
found 19 reports that were related to code for which we did
not find the source code and they were dropped from the
study.

Table 1: Issues per Category
Category Percentage

Obviously Useless Code 1%
Confused Conjunctions 2%
Confused Language Semantics 3%
Dead Extensibility 9%
Forgotten Constant 4%
Null Confusion 54%
Range Double Checks 11%
Type Confusion 3%
Unexpected Return Value 5%
Unsupported Operation Usage 7%
False Positives 1%

From the 537 remaining reports 279 (≈ 52%) were auto-
matically classified as irrelevant. A further analysis revealed
that 81% of the 279 irrelevant reports are related to compiler
generated/forced dead code - a finding that clearly demon-
strates the need to suppress warnings for compiler generated
dead code. Another 12% are due to assertions or common
programming idioms. The remaining 7% were false nega-
tives, i.e. the filtering was too aggressive and suppressed
warnings for true issues. All these cases were related to a
method read5 that just throws an exception and which was
called at the end of the calling methods. Hence, they were
automatically classified in the Intricacies of Java category.
Given that the filter otherwise proved very helpful, we de-
cided to accept these false negatives.

The vast majority of the reported issues – i.e., the issues
that were deemed relevant by the analysis – is related to
null values. A closer investigation revealed that developers
are often literally flooding the code with null checks that
only check what is already guaranteed. However, as already
discussed in the introduction we also found numerous cases
where field and method accesses were done on null values.
The second top most category of issues is related to checking
that an integer value is in a specific range. As in the previous
case this is sometimes useless, but in many cases it identifies
situations where it is obvious that the code does not behave
as intended.

For each of the other categories we found so few issues
that the development of a specially targeted analysis would
probably not be worthwhile for other approaches. However,
taken together, these categories make up 34% of all issues

5Presented in Listing 12.
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and given that we identify them for free, these findings are
significant.

Finally, we found two false positives (< 1% of all issues)
as discussed in the previous section.

4.1.2 Varying the Analysis Parameters
To determine the sensitivity of the analysis on changed

analysis parameters, we ran several instances of the analysis
with maximum call chain lengths of 1, 2, 3, 4 and 5 and
with a maximum cardinality settings for integer ranges of 2,
4, 8, 16 and 32. If the analysis time of a single method ex-
ceeded 10 seconds, the respective analysis was aborted. This
time limit was chosen because it enables the vast majority
of methods to complete within the timeframe, but it still
avoids that the entire analysis is completely dominated by
a few methods with extraordinary complexity6. The analy-
sis was executed on a 8-Core Mac Pro with 32GB of main
memory. Overall, we ran the analysis 25 times.

Table 2: Evaluation of the Analysis Parameters Sen-
sitivity

Max
Call
Chain
Length

Max
In-
teger
Ranges
Cardi-
nality

Issues
Rele-
vant

Issues
Fil-
tered

Issues
To-
tal

Time
[s]

Aborted
Meth-
ods

1 2 690 1157 1847 10 0
1 4 699 1172 1871 11 0
1 8 701 1180 1881 13 0
1 16 702 1182 1884 21 0
1 32 702 1182 1884 27 0
2 2 1078 1248 2326 25 0
2 4 1090 1269 2359 31 0
2 8 1093 1277 2370 43 0
2 16 1094 1279 2373 73 0
2 32 1094 1279 2373 149 1
3 2 1189 1252 2441 60 0
3 4 1201 1273 2474 78 0
3 8 1204 1281 2485 139 0
3 16 1205 1283 2488 289 1
3 32 1205 1283 2488 894 10
4 2 1224 1252 2476 156 0
4 4 1236 1273 2509 205 1
4 8 1237 1281 2518 438 7
4 16 1237 1283 2520 1259 27
4 32 1233 1283 2516 6117 63
5 2 1225 1252 2477 457 4
5 4 1235 1273 2508 990 7
5 8 1239 1281 2520 1566 20
5 16 1234 1283 2517 5482 80
5 32 1233 1283 2516 39274 143

As expected, increasing the max call chain length or the
maximum cardinality also increases the number of identified
issues. However, the effectiveness of the analysis in terms of
number of issues per unit of time decreases sharply. As
shown in Table 2, the number of additional relevant issues

6A particularly complex method can be found in jdk.-
internal.org.objectweb.asm.ClassReader. The method
readCode is more than 500 lines long and contains several
loops that each call multiple methods.

that are found if the call chain length increases from 1 to 2
is remarkable (≈ 50%). However, the number of additional
issues that are found if the maximum call chain length is
increased from 4 to 5 is much less impressive (depending on
the maximum cardinality of integer ranges between 1 and 2
additional issues).

Hence, increasing the maximum cardinality of ranges of
integer values is initially much less effective than increas-
ing the maximum call chain length. If the maximum call
chain length is 1 then increasing the cardinality from 2 to
32 increases the necessary effort more significantly than in-
creasing the call chain length by one, though the latter will
lead to the detection of more issues. Nevertheless, certain
issues can only be found if we increase the maximum car-
dinality and at some point increasing the cardinality is the
only feasible way to detect further issues. For example, in-
creasing the call chain length from 4 to 5 does not reveal
significantly new issues. However, the analysis still revealed
new issues when we increased the range’s cardinality. Fur-
thermore, if we specify an upper bound of 10 seconds for the
analysis of a single method – which includes the time needed
to analyze called methods – the number of aborted methods
rises significantly and we therefore even miss some issues.

In summary, from an efficiency point-of-view, a maximum
call chain length of 2 or 3 and a maximum cardinality of 4
or 8 seems to be the sweet spot for the analysis of the JDK.

We also examined some of the issues (using random sam-
pling) that only show up if we increase the call chain length
from one to two to get an initial understanding of such is-
sues. This preliminary analysis reveals that most additional
issues were related to a defensive coding style, which can
also be seen in the Null confusion, Range Double Checks or
Confused Language Semantics categories.

A prototypical example is shown in Listing 21. The check
of tmpFile against null (Line 2) is useless as the method
createTempFile will never return null.

1 tmpFile = File.createTempFile(”tmp”,”jmx”);
2 if (tmpFile == null) return null; (∗ return null is dead ∗)
3

4 File createTempFile(String pre, String suf) throws ... {
5 return createTempFile(pre, suf, null); }
6 File createTempFile(String pre, String suf, File dir) throws ... {
7 ... File f; ...
8 if (!fs.createFileExclusively(f.getPath())) throw ...
9 return f; (∗ The only return statement. ∗) }

Listing 21: Defensive code in javax.management.-

loading.MLet.getTmpDir

4.2 Qualitas Corpus
We ran the analysis twice on all 109 projects of the Qual-

itas Corpus [22]7. The corpus is well suited to evaluate
general purpose tools such as the proposed one as it is a
curated collection of projects across all major usage areas
of Java (Desktop-/Server-side Applications and Libraries).
The evaluation is done once using a maximum call chain
length of 1 and once using a maximum length of 2. Overall,
this study supports our previous findings. As in case of the
JDK study, increasing the maximum call chain length from 1
to 2 led to the identification of a significantly higher number
of issues. Sometimes even more than twice as many issues
are found (e.g., Eclipse, JRuby or Findbugs), which further

7Version 20130901.
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stresses the importance of context-sensitivity for bug find-
ing tools. Overall, we found more than 11 000 issues across
all projects. Interestingly, we did not find any issues in the
projects jUnit, jFin, jGraphT, Trove, sablecc and fit. A close
investigation of these projects revealed that they are small,
maintained by a small number of developers, and possess
good test suites.

5. RELATED WORK
Besides the term dead code, which we are using, other

closely related terms are also frequently used in related work.
For example, Chou et al. [8] use the term unreachable code.
In their case a fragment of code is unreachable if there is no
flow of control into the fragment and is thus never on any
path of execution of the program. Their focus is, however, on
generating good explanations that facilitate reasoning why
the code is dead.

Kasikci et al. [17] use the term cold code to refer to code
that is rarely or never executed at runtime. They propose
to use a dynamic analysis based on sampling the execution
frequencies of instructions to detect such code. As in our
case, code that is identified as dead is seen as a threat to
software maintenance. In a similar context Eder et al. [13]
use the term unused code and they also point out that un-
used code constitutes a major threat to the maintainability
of the software. As usually, approaches using dynamic anal-
yses as proposed by Kasikci et al. and our approach which
uses static analysis complement each other.

Approaches based on formal methods that rely on SMT
solvers were also used to identify variants of dead code. The
approach described in [1, 2, 6] for example also determines
code that is never executed. They use the term infeasi-
ble code to describe code that is contained in an infeasible
control-flow path. Schäf et al. [21] take an even wider look
at the topic by looking for Inconsistent Code. I.e., code that
always fails and code that makes conflicting assumptions
about the program state. Compared to our approach these
approaches are trying to prove that the software is free of re-
spective issues. However, they are interested in dead paths
of a specific kind while we are interested in dead paths as
such and find dead paths related to a variety of issues.

Abstract interpretation [10] was already used in the past
to detect dead code [11, 20]. But, compared to our approach
the respective tools try to prove that the code is free of such
issues by performing whole-program analyses. The result is
that those tools favor precision over scalability and are often
not targeting the analysis of libraries. Payet et al. [20] for
example use the Julia static analyzer to identify – among
others – dead code in Android programs.

Though detecting and eliminating code that is dead has
been the subject of a lot of research related to compiler
techniques [12, 18], our case study has shown that it is still
a prevalent issue in compiled code. Nevertheless, standard
techniques that rely on live variable analysis or other data-
flow analyses are now an integral part of many modern inte-
grated development environments such as Eclipse or IntelliJ.
They help developers to detect some related issues. Com-
pared to these approaches we perform an inter-procedural,
context-sensitive analysis based on abstract interpretation
which is well beyond the scope of compilers and – as demon-
strated – is able to find many more issues.

Other approaches which also try to identify a broader
range of issues, such as FindBugs [9] or JLint [3], imple-

ment one issue detector for each kind of issue. This limits
these approaches to only detect those issues the developer
explicitly had in mind which is not the case in our approach.
Compared to the presented analysis they can also find issues
that are not related to the control-/data-flow.

6. CONCLUSION
In this paper, we have presented a generic approach for the

detection of a range of different issues that relies on abstract
interpretation. The approach makes it possible to adapt the
executed analysis to a library’s or application’s needs and
can easily be extended in a generic fashion. As the evalua-
tion has shown, the presented approach is able to find a large
number of issues across many categories in mature large Java
applications. We have furthermore motivated and discussed
the filtering of false positive that are technical artifacts as
well as those related to common programming idioms. The
presented techniques reduce the number of (perceived) ir-
relevant reports to nearly none. Overall, the approach is
very promising and will be the foundation for future work
on self-adaptive static analyses.

The tool is available for download at:
www.opal-project.de/tools/bugpicker
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