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ABSTRACT

Over the past years, widely used platforms such as the Java
Class Library have been under constant attack through vul-
nerabilities that involve a combination of two taint-analysis
problems: an integrity problem allowing attackers to trigger
sensitive operations within the platform, and a confidentiality
problem allowing the attacker to retrieve sensitive informa-
tion or pointers from the results of those operations. While
existing static taint analyses are good at solving either of
those problems, we show that they scale prohibitively badly
when being applied to situations that require the exploitation
of both an integrity and confidentiality problem in combina-
tion. The main problem is the huge attack surface of libraries
such as the Java Class Library, which exposes thousands of
methods potentially controllable by an attacker.

In this work we thus present FlowTwist, a novel taint-
analysis approach that works inside-out, i.e., tracks data
flows from potentially vulnerable calls to the outer level of
the API which the attacker might control. This inside-out
analysis requires a careful, context-sensitive coordination of
both a backward and a forward taint analysis. In this work,
we expose a design of the analysis approach based on the
IFDS algorithm, and explain several extensions to IFDS that
enable not only this coordination but also a helpful reporting
of error situations to security analysts.

Experiments with the Java Class Library show that, while
a simple forward taint-analysis approach does not scale even
with much machine power, FlowTwist’s algorithm is able to
fully analyze the library within 10 minutes.
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1. INTRODUCTION

Static taint analyses constitute an important class of static
program analyses that track data to check whether it can flow
from given sources to given sinks. Taint analyses are used
to address integrity or confidentiality problems. When using
the analysis for an integrity problem, sources are inputs that
are controllable by an attacker and sinks are functions that
perform sensitive operations. For confidentiality problems,
sources are functions that may leak private data and sinks
are outputs that an attacker can read.

Common vulnerabilities in systems that execute untrusted
code often involve a combination of related integrity and con-
fidentiality issues. Assuming these vulnerabilities have been
introduced to a system’s code accidentially, they are called
Confused Deputy Problems[11]. In this class of problems an
attacker uses a proxy possessing the necessary authority —
the confused deputy — to carry out operations on its behalf.
Detecting instances of this problem requires a combination
of an integrity and a confidentiality analysis. Instances of
the confused-deputy problem are a real and relevant problem
for example in the Java Class Library (JCL). Vulnerabilities
based on this problem have been exploited multiple times
in the past. The most prominent exploits are described in
the Common Vulnerabilities and Exposures Directory under
the identifiers 2012-4681, 2013-0422, and 2013-2460 and have
posed grave risk to the security of the Java platform. In
the most common attack vector against Java, the attacker
exploits the vulnerability to have the platform load a class
on his behalf, which otherwise he would have no permission
to load. In this kind of attack, the attacker controls the
input to a class-loading method call, an integrity problem,
and then retrieves the class object returned from that call, a
confidentiality problem.

Existing taint-analysis approaches show often prohibitive
scalability problems when considered as a means to discover
the kind of problems described above, as we elaborate in the
following.

A taint analysis for discovering integrity problems typically
works in a forward mode: It starts at sources and follows
assignments until finding a sink. If there are more sources
than sinks, such a forward taint analysis may follow unnec-
essarily many paths which will never lead to a sink. These
excess computations will eventually impede the scalability
of such an analysis. In a real-world system that executes
untrusted code, sources are all public API functions that
the untrusted code can call. The amount of these public
functions is typically by orders of magnitude larger than the
number of sensitive sinks to control. For instance, in the



Java Class Library there are over 45,000 public methods.
When considering an analysis to find vulnerabilities of calls
to Class.forName, 134 call sites have to be regarded as sinks.
Seeing all of the public methods of the JCL as sources, there
are clearly more sources than sinks in an analysis of this
kind.

A backward analysis starting at sinks can address the
scalability issues of a forward taint analysis |12} |4]. However,
this only provides a scalable solution to the integrity problem.
For the confidentiality part of a confused-deputy problem,
the backward analysis would now face the same problems
described above: in principle, many methods of the public
API would have to be considered as possible sources for the
backward analysis, most of which would never probably reach
a sink.

In this work we thus present FlowTwist, a novel analy-
sis approach which efficiently solves the integrity part of a
confused-deputy problem in a backward manner, and solves
the confidentiality part just as efficiently in a forward manner.
If applied to the Java Class Library, this analysis needs to
start only at 134 potentially vulnerable Class.forName calls,
and not at all 45,000 public API methods. The challenge
for FlowTwist is to efficiently combine the analysis results of
both analyses in a context-sensitive fashion such as to avoid
spurious results caused by unrealizable control-flow paths.
To reconstruct the context-sensitivity between the two inde-
pendent analyses we match and connect a reconstruction of
the call stacks of their results. Thereby, complete paths from
sources to sinks and back towards the source are constructed,
which are affected by an integrity and a confidentiality prob-
lem. We call this analysis an inside-out analysis as it starts
at the inner layer of the API — which we consider as sinks — ,
e.g., a call to Class.forName within the Java runtime library,
and then works its way outward to the public API — the
sources.

We implement our approach by several extensions of the In-
terprocedural Finite Distributive Subset (IFDS) algorithm by
Reps et. al. |[19]. The original IFDS algorithm was designed
to accommodate, for instance, forward taint analyses flowing
from sources to sinks. Previous work |1] added the possibility
to use the algorithm for backward analysis. In this work,
we extend the IFDS algorithm with support for so-called
unbalanced return flows, i.e., a flow out of a function whose
calls have not been considered previously. Support for unbal-
anced return flows is necessary to facilitate an analysis that
progresses from the inner layer of a API to the outer layer.
Third, we extend the facts propagated by the algorithm to
store information on the paths they were propagated on, to
be able to reconstruct these paths.

This information is not only useful for reporting vulnera-
bilities, but it is also used by another novel algorithm which
combines the results of the forward and backward taint anal-
yses to derive a complete result containing code paths that
are possibly vulnerable due to the combined integrity and
confidentiality problem. The algorithm first constructs semi-
paths from the two analyses results and then matches them
to establish context-sensitivity. Matched semi-paths are com-
bined to complete paths providing detailed information about
the leaking data flows.

However, enumerating all semi-paths for matching threat-
ens the scalability of the whole approach. Therefore, we
introduce an additional extension to the IFDS algorithm
that keeps the context of the forward and backwards analysis

constantly in sync. As a result, the analysis algorithm will
never produce semi-paths for the integrity problem for which
no matching path of the confidentiality problem exists in the
first place and vice versa, greatly reducing the number of
paths that the path-matching algorithm needs to consider.

To validate our hypothesis that the inside-out approach is
faster and scales better for large codebases than a pure for-
ward taint analysis, we apply both analyses to the confused-
deputy problem. All analyses implemented for the experi-
ments are equally precise, context sensitive, flow sensitive,
and report the same data flows. In our experiments we run
them on the Java Class Library (JCL) shipped with the
Java Runtime Environment. We consider the JCL as a large
codebase as it contains over 18.500 classes with over 45.000
attacker-callable API methodSE

We find that our inside-out approach scales significantly
better for an analysis of vulnerabilities to calls to
Class.forName than a pure forward analysis, which we ex-
tended to cover integrity and confidentiality problems. In
our experiments the inside-out approach was on average five
times faster than a pure forward analysis, whilst using no-
tably less memory. Also, we observe that only our dependent
inside-out analysis is able to terminate in reasonable time for
a larger problem targeted at finding vulnerabilities to calls
to methods marked with the annotation @CallerSensitive.
We therefore conclude that this approach effectively solves
larger problems and thus scales better.
To recap, the main contributions of this paper are:

e A context-sensitive inside-out taint-analysis approach
that solves the scalability problems of current approach-
es when applied to detect problems involving combined
integrity and confidentiality issues in large codebases.

e An implementation of the proposed approach as an
extension to the IFDS algorithm

e A novel path construction algorithm for more compre-
hensive reporting for the IFDS algorithm

e An extension to our analysis that effectively solves
scalability problems in path construction

e An extensive evaluation of the proposed approach on a
real problem scenario

The remainder of this paper is structured as follows. In
Section 2] we give a brief overview of our approach. Section 2]
presents and overview on the IFDS algorithm. In Section
we present the inside-out analysis approach that we propose
in further detail. Section [] presents the design, execution
and the results of our evaluation. In Section |5} we discuss
the relationship of other work. We conclude the paper in
Section [f] with a summary of the findings and an outlook on
possible future work.

2. OVERVIEW

In this section, we give background information on the
IFDS algorithm [19] followed by a high-level overview of our
proposal.
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Figure 1: Fact Propagation in the IFDS Algorithm (the relations predecessor and neighbors are shortened here as

pred and neigh)

procedure PropagateAndMerge((sp, d1) — (n,d2))
if 3dj | value(dz) = value(dy) A
(sp,d1) — (n,d5) € Seen then
neighbors(dy) := neighbors(ds) U do
else
Insert (sp,d1) — (n,d2) into Seen
Propagate((sp,d1) — (n,d2))
end if
end procedure

[

Figure 2: Change to Support Neighbors in IFDS

2.1 IFDS Algorithm

The Interprocedural Finite Distributive Subset (IFDS)
algorithm [19] addresses data-flow problems with distributive
flow functions over finite domains. Reps et al. show that if
the problem is modelled in this fashion, the analysis problem
can be reduced to a graph reachability problem. The graph
they built is a so called exploded super graph, in which for
each node (s,d) is reachable from a special distinct start
node if a data-flow fact d holds at a statement s.

For illustration, consider a taint analysis which should be
applied to the example in Figure For the assignment b
= a the flow function of a taint analysis should generate a
fact that variable b is tainted after executing the statement,
assuming variable a was tainted before. It also should retain
the fact that variable a will then still be tainted. But, if
variable a was not tainted before but variable b was, then
variable b should not be tainted afterwards. Such semantics
are typically illustrated by graphs as in the Figure FEach
dot represents a fact before and after the execution of a
statement. Arrows between these dots represent that the
applied flow function claims there is a data-flow from one
fact to the other for a specific statement.

In the presented example there is a path shown in red color

from a value passed as a parameter to the returned value.

After analyzing the function foo once, the IFDS algorithm
will create and store this path as a summary edge. This is
important for scalability as it allows to reuse the summary
edge the next time a call to foo is being processed instead
of analyzing the whole function body again. This becomes
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even more obvious, when considering that foo could itself
call other functions which in turn had to be analyzed again
too.

2.2 The Proposal in a Nutshell

The suggested analysis performs four steps as illustrated
in Figure [3l In the first step the static analysis framework
Soot [14] is used to read Java Bytecode and to transform it to
an intermediate three-address representation called Jimple.
In that step it also computes an Interprocedural Control Flow
Graph (ICFG). In the next step, the Interprocedural Finite
Distributive Subset (IFDS) algorithm [19] uses the ICFG to
compute data-flow facts along edges of the ICFG. Heros [1] is
used as implementation of the IFDS algorithm, which is actu-
ally an implementation of the extended IFDS algorithm [17].
The IFDS algorithm is performed two times: one time for the
integrity problem; and another time for the confidentiality
problem. The IFDS algorithm implementation is extended
and the data-flow facts are modelled such that they support
reconstruction of exact paths along which the data-flow facts
were propagated. These paths are reconstructed in the third
step. However, we call these paths semi-paths as they repre-
sent only the integrity or confidentiality part of a complete
path. In the last step, semi-paths are matched to generate
complete paths.

3. ANALYSIS DESIGN

The analysis design we propose is capable of addressing
integrity and confidentiality issues at the same time. Based
on the observation that a pure forward analysis is not scalable
or fast enough to be applied for such taint analysis problems



on huge codebases, we propose an inside-out analysis design.
Additionally, we address the lack of reporting along which
statements a data-flow exists in the IFDS algorithm.

In Section we first introduce how we model facts prop-
agated by the IFDS algorithm to include information about
statements and paths taken in data flows. An inside-out anal-
ysis requires the support of unbalanced returns, i.e., return
flows for which no previous call flow has been registered. The
original IFDS algorithm does not support such unbalanced
flow. We therefore formalize them as an extension to IFDS
in Section After having executed the IFDS algorithm,
FlowTwist constructs two classes of semi-paths, one for the
integrity and one for the confidentiality problem. These
are then matched pairwise to construct combined execution
paths. Section |3.3| explains this path matching, followed
by a discussion of simplifications to improve scalability in
Section [3:4] Section [3.5] presents changes to the IFDS algo-
rithm that make the analyses for integrity and confidentiality
dependent on each other, avoiding analyzing and creating
paths for program parts for which only an integrity or confi-
dentiality issue exists. From a security point of view, such
paths are not interesting, for instance because an attacker,
while being able to trigger the loading of a restricted class,
would not be able to obtain access to the loaded class handle.

We applied all extensions and changes to the IFDS al-
gorithm implementation Heros [1] and provided these as
contributionsﬂ Additionally, we provide the implementation
of our analysis

3.1 IFDS Extension to Store Path Information

The use of summary edges in IFDS has drawbacks when it
comes to reporting analysis results. In the example in Figure
only one branch propagates a potential taint from the
parameter to the returned value. Yet, information on possible
alternative flows (or in this case their nonexistence) is lost.
But not only information about these intraprocedural paths
are lost, one also loses information about the interprocedural
edges the analysis takes, as the summaries abstract over
called procedures. Moreover, an IFDS-based analysis is only
able to report the source and sink of a data flow, but not
any intermediate statements.

To overcome this limitation, FlowTwist adopts a model
of facts that allows to track the flow along which they are
propagated. A natural approach to taint analysis with the
IFDS algorithm is to use the identifiers of variables as propa-
gated taint facts. However, to enable path tracking we need
a more extensive fact representation. We propagate facts of
type Fact instead and define several relations on this type:

value : Fact — Variable
source Fact — Statement
predecessor Fact — Fact
neighbors Fact — P(Fact)

The relation value maps each fact to the related tainted
variable. The relation source maps a fact to a statement at
which the fact was generated. The relation predecessor links
to the fact from which a flow function generated the current
fact. Effectively, this creates a chain of facts, allowing to

2The implementation of Heros is available on GitHub:
https://github.com/Sable/heros

*The implementation of FlowTwist is available on GitHub:
https://github.com/johanneslerch/FlowTwist

traverse the complete flow for a fact reported at an arbitrary
sink. The relation neighbors links to similar facts, i.e., facts
with the same value, at positions where flows are merged.
Following examples will illustrate why this is model is simpler
than storing multiple predecessors.

Figure shows the propagated facts when modeled as
described. Note that some propagated facts are left out
to simplify the illustration. Consider how the fact that
predecessor(cz) is by and not ¢; encodes that the flow is only
possible along one branch in foo (c.f. Figure . The chain-
ing of facts does not preclude the algorithm from computing
summary functions, which is important for the scalability
of the IFDS algorithm. In the example, the summary edge
represents that if a tainted variable is passed as argument
to foo, then the fact c2 holds, i.e., ¢ is tainted, when the
method returns. The summary abstracts of the intermediate
facts a1, a2, and by, but nevertheless the chain of predecessor
links allows FlowTwist to later reconstruct the path along
these facts through the reference to cz, which is included in
the summary.

To illustrate the role of the neighbors relation, consider the
example in Figure Here, the facts b1 and b2 both hold at
the same statement and both represent the fact that variable
b is tainted. Moreover, these facts should be merged into a
single one as otherwise from this point on, every propagation
is computed two times for similar facts. This effect multiplies
further for every branch taken, yielding a clear threat to the
scalability of the analysis. IFDS is restricted to set union as
a merge operator, and is thus unable to identify “similarity”
of FlowTwist’s data-flow facts. Therefore, we extend the
IFDS algorithm to recognize if a fact is propagated along
an edge for which previously a fact was propagated with
the same value. If this occurs, the second propagated fact
is set to be a neighbor of the first propagated fact and
the second fact is not propagated further. In contrast to
creating predecessor links it is not possible to encode this
behavior in a flow function. However, the IFDS algorithm
can be extended by simply wrapping calls to the “Propagate”
procedure [19] as shown in Figure [2| Given the fact d2 to be
propagated, “PropagateAndMerge” checks whether there is a
fact db stored in the set Seen for which the value is the same
as the value of d. If such a fact d5 exists, then ds is added
to its neighbors and not propagated further; otherwise da is
added to the set Seen and propagated.

We do not use the predecessor relation to store informa-
tion about a merge, as it increases complexity of handling
summary edges. In the example function bar we would have
to create two summary edges: one for the fact b; and one
for fact b2. For each caller of the function these have to be
recognized as representing the same value, i.e., adding both
as predecessors. Using the neighbors relation allows to store
only one summary edge, i.e., for the first fact propagated to
the return statement. Nevertheless, the path through the
second fact can be equally reconstructed as it is stored as a
neighbor of the first.

3.2 Unbalanced Return Flows

Neither in its original version [19] nor in its extended
version [17] does the IFDS algorithm support unbalanced
return flows. Unbalanced return flow occur when processing
a return of a method for which no matching previous call was
processed. In a typical context-sensitive analysis starting at
the outer layer of an API, calls are always processed before
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procedure ForwardTabulateSLRPs

11:  Select and remove an edge (sp,d1) — (n,d2) from
WorkList

22: foreach (c,ds) € Incoming [(sp,d1)] do
... //unchanged handling of balanced return flows
31: od
31.1: if di == 0 A Incoming [(sp,d1)] =0 then
31.2: foreach c € callSitesCalling(procOf(s,)) do
31.3: foreach ds € returnVal((e,, d2), (¢, d1)) do

31.4: Propagate({Sprocof(c), 0) — (returnSite(c), ds))
31.5: od

31.6: od

31.7: end if

end procedure

Figure 4: Extension to Support Unbalanced Return
Flows (line numbers match the complete representation of the
IFDS algorithm shown in Figure 4 of [17])

c(x) {
Outer y = b(x)
Layer if ( . .)
11: d(y)
Inner else
12: z = d(const)
Layex return z
— Call ----» Return ¥
(a) (b)

Figure 5: Example Flow from Inner to Outer Layer

returns, making unbalanced returns impossible. But Flow-
Twist starts the analysis on the inside of the API, which
naturally calls for supporting such unbalanced return flows.

Figure [ shows our extension to the IFDS algorithm to
enable unbalanced return flows. In line 22 through 31, the
algorithm originally loops over all incoming edges and prop-
agates return flows accordingly. Our modification adds lines
31.1 through 31.7. In line 31.1 we check, if the algorithm is
currently in a unbalanced situation. This is the case when d
is the autological fact 0, which always holds, and when there
is no incoming edge into d; for the current function’s starting
point sp. If identified to be in an unbalanced situation, the
algorithm computes and propagates return flows to each
possible call site. Note that in situations where FlowTwist
returns from a method m in an unbalanced way and then
processes a call to m again, say with a fact di, then this
will lead to a situation where the incoming-set of (sp,d1) is
not empty, which is why in this case FlowTwist will perform
a normal balanced return, maintaining context sensitivity,
returning only to the appropriate call site.

3.3 Creating and Matching Semi-Paths

If working in a regular outside-in manner, a taint analysis
would start at sources on the outer level of the API, through
some sensitive method such as Class.forName(..) and then
then back to the original method at which the analysis started.
That way, the analysis can report a possible flow as soon
as it reaches this starting point again. FlowTwist cannot

adopt the same strategy as both its analyses — the one for the
integrity problem and the one for the confidentiality problem
— are inside-out analyses: They start at some inner layer of
the program being analyzed and should report potential flows
reaching some outer layer.

To report a flow for the inside-out analyses two conditions
have to be met: (1) the flow must reach a source method; we
do not define what characterizes source methods at this point,
as this depends on the concrete analysis problem addressed.
(2) That function must be a transitive caller of the sink.

The need for condition (2) is illustrated in Figure
Assume we start an inside-out analysis at function d. This
function returns unbalanced to function c¢. Function ¢ calls
b, from which the flow returns balanced (context-sensitively).
Subsequently, the flow returns unbalanced to a. Condition
(1) holds for functions a and b. Yet, reporting at b does not
make sense, because if b gets called by untrusted code there
is no program flow to d as b will return to the untrusted code.
This is where condition (2) comes to play. It only holds for
a and ¢, but not for b. So, a flow is only reported at a. Note
that condition (2) can be easily checked: It will hold if and
only if the function is entered by an unbalanced return.

Once a flow is reported, the algorithm traverses the prede-
cessor chain of facts to construct a semi-path through the
program along which a flow exists. It is a semi-path because
it only contains one way from a source to a sink. To construct
complete paths the semi-paths produced by the two analyses
in isolation need to be matched. This has to happen with
awareness of context, as it otherwise leads to paths that are
infeasible at run time. This context is the call stack, which
has to be same to match semi-paths. For the example flow
illustrated in Figure [5a} the call stack would be [a, ¢, d].

Instead of function names, however, FlowTwist uses the
concrete call sites to encode the call stack. The code of
function ¢ shown in Figure illustrates why concrete call
sites are required. In that example, semi-paths exist both
for the integrity problem and the confidentiality problem,
and they also share the same functions on their call stacks.
But, the semi-path for integrity uses the call site labeled as
11, while the semi-path for confidentiality uses 12. Thus,
the two semi-paths should actually not be combined into
one execution path. However, this conclusion could not
be reached, if FlowTwist used function names rather than
concrete call sites in the call stacks.

The question is how to retrieve concrete call sites along
the semi-paths. Using the relation source does not serve
the purpose, because return edges start at an exit statement
and end at a return site; the call sites themselves are not
included. It is also infeasible to model the call stack as part
of facts, because this would make facts caller dependent, thus
it is not possible to reuse summary edges across multiple
callers. To address the need of storing the call sites we
extend our model of facts by the following relations. For
facts propagated along call and return edge, relatedCallSite
maps to the related call site and callStackEffect is used to
store the effect on the simulated call stack, when traversing
a fact. For intra-procedural flow edges, callStackEffect maps
to None.

relatedCallSite
callStackEffect

Fact — Statement
Fact — [None | Push | Pop]



The construction of all semi-paths for a fact f is imple-
mented by the work list algorithm shown in Figure [f] As
semi-paths are constructed by traversing the predecessor
chain of facts, their corresponding call stacks are computed
as well. Due to merging facts in the IFDS-algorithm step,
the predecessor and neighbor references allow traversing the
fact chain in context-insensitive ways. By simulating the call
stack in parallel for each semi-path the algorithm ensures
that constructed semi-paths only return to callers through
which they entered a method (line .

Once all semi-paths are constructed, pairwise matches
according to their respective call stacks are built and the
reversed semi-path of the confidentiality sub-analysis is ap-
pended to the semi-path of the integrity sub-analysis. The
two thus concatenated semi-paths form a complete path:

Paths = {[fi.. - fns9m ... g1]:
([f1--- fn],csi) € Integrity-SemiPaths A
([g1 - - - gm], cse) € Confidentiality-SemiPaths A

cS; = cSc}

3.4 Simplifications to Improve Scalability

In several places we have mentioned the importance of
being able to merge similar facts and reuse summary edges
to allow the IFDS algorithm to be scalable. Moreover, the
IFDS algorithm would not scale if we formulated it in a
way that all possible data flows are considered in isolation.
However, this is what we do in the construction of semi-
path and thus also this step would not scale without some
simplifications. The first simplification was already presented
implicitly, as only paths are constructed for which it is known
that there is a data flow, i.e., by only traversing the data-flow
facts generated by the IFDS algorithm. But, our experiments
have shown that this is not enough.

A second simplification is to include into a semi-path only
those facts f, where value(f) points to a different variable
than its successor, meaning the semi-paths will only include
facts and statements at which the tainted variable is assigned
to another variable, used as argument of a call or being
returned (line El in Figure @

This reduces the number of semi-paths that have to be
constructed, as branches not using a tainted variable do not
result in additional semi-paths. We think this simplification
to be useful also from a usability perspective, as it discards
facts in reported paths that are not necessary to comprehend
the reported data flow. Note that this simplification is en-
capsulated in the implementation of firstIntroductionOf and
can therefore be easily loosened or tightened, e.g., through
an implementation that returns only facts at interprocedural
edges.

A third simplification is an additional cycle-elimination
criterion supplementing the natural elimination criterion
that does not include the same facts twice in a semi-path
(line . During experiments we found huge sub-type hierar-
chies, which recursively call themselves (e.g. implementations
of the decorator pattern). In many cases, precise points-to
information is missing, causing conservative approximations
to assume call edges to all sub-types. Data flows through
such hierarchies result in a combinatorial explosion during
semi-path construction. This is because the algorithm will
consider each possible sorting order in which the sub-types
can call each other.

The cycle-elimination criterion to not include the same fact
twice does not help here, as it only prevents including the
same function of the same sub-type multiple times. Therefore,
we introduce an additional criterion preventing the inclusion
of semi-paths calling a function recursively multiple times.
This criterion is reflected in the algorithm using the variable
cf denoting called functions.

3.5 Dependent Analyses

As previously discussed, the enumeration of all possible
semi-paths is a critical threat to FlowTwist’s scalability. In
the following we show how both sub-analysis can be made
dependent on each other, such that flows will only be re-
ported if they exist for both the integrity and confidentiality
problem, in the same consistent calling contexts. This avoids
enumerating semi-paths for which no matching counterpart
will exist anyway. As pointed out in former sections, semi-
paths of both sub-analyses will only match if the call stack
is equal. For this matching only unbalanced return edges are
relevant as only these are on the reconstructed call stacks.
Balanced return edges will be pushed on the stack also, but
in contrast to unbalanced returns these will be popped off
the stack again when processing call edges. This behavior is
exploited by synchronizing the two sub-analyses on their un-
balanced returns, i.e., either analysis should not perform an
unbalanced return until the other sub-analysis would return
to the same context as well.

Implementing this idea requires a further addition to the
IFDS algorithm. All analysis facts are augmented, encapsu-
lating them in a tuple Fact x Statement, whereas the first
element is the replaced fact and the second a call site used
for the synchronization. Flow functions themselves remain
unchanged. They receive only the first element of the tuple
as argument. Subsequently, tuples are generated from facts
returned by the flow function:

wrappedFlow({n, (f,s))) = {{d, s) : d € flow((n, f))}

where flow is an arbitrary flow function. When seeding
initial facts as starting point for the analyses, the statement
of the tuple is set to the sink. On unbalanced returns,
this statement is replaced by the call site related to that
return edge. Importantly, though unbalanced returns are not
propagated immediately, unless the other sub-analysis has
also reached an unbalanced return with a tuple referencing
the same call statement. If there is yet not such a return, the
current sub-analysis will pause the return edge, parking it in
an internal work list. Paused edges are resumed by the other
sub-analysis if encountering the same return, or simply never
in case the same return is never reached. In the latter case,
this means that there is only an integrity or confidentiality
problem, but not both. The extension to the IFDS algorithm
for this is shown in Figure [7] and replaces the extension for
unbalanced returns shown in Figure@ The internal work list
of each solver is called leaks. The algorithm terminates once
the work lists of both sub-analysis are empty, disregarding
the existence of paused edges.

4. EVALUATION

We performed experiments to compare the proposed inside-
out analysis approach with a pure forward analysis in terms
of required memory and execution time.
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procedure computeSemiPaths(f)
declare WorkList : {[Fact]x[CallSite] x {Function}}
declare SemiPaths : {[Fact]x [CallSite]}
Insert ([f],0,0) into WorkList
while Worklist # () do
Select and remove an item ([f1 ... fn], [cs1...csm], cf)
from WorkList
if f, =0 then
Insert ([f1...fn-1],[cs1...csm]) into SemiPaths
else
foreach p € firstIntroductionOf( f,) do
valid :=p & [f1. .. fn]
if callStackEffect(p) = None then
cs = [cS1...C8m]
else
res = relatedCallSite(p)
decls := initial Declarations(called Funcs(res))
switch e := callStackEffect(p) do
case e = Push
cs = [cs1...C8m,TCS]
valid := valid A ((¢fN decls) = ()
cf := cfU decls
case e = Pop
cs = [cS1...CSm—1]
valid := valid A (csm = rcs)
cf := cf\ decls
end switch
end if
if valid then
Insert ([f1... fn, D], cs, ¢f) into WorkList
end if
od
end if
od
return SemiPaths
end procedure

procedure firstIntroductionOf(f)
declare WorkList : {Fact}
declare Result : {Fact}
declare Visited : {Fact}
WorkList := neighbors(fn) U fn
while Worklist # () do
Select and remove an item g from WorkList
p := predecessor(g)
if p =0 V value(g) # value(p) then
Insert g into Result
else
foreach n € neighbors(p) Up do
if n ¢ Visited then
Visited := Visited Un
WorkList := WorkList Un
end if
od
end if
od
return Result
end procedure

Figure 6: Algorithm to Compute Semi-Paths

declare leaks : {Statement}
declare paused : {StatementxPathEdge}
procedure ForwardTabulateSLRPs

11:  Select and remove an edge (sp, (d1,s)) = (n, {dz,s))
from WorkList

31.1: if di == 0 A Incoming [(sp,d1)] =0 then

31.2: foreach c € callSitesCalling(procOf(s,)) do
31.3:  foreach ds € returnVal({ep, d2), (¢,d1)) do
31.4: leaks = leaks U s
31.5: edge :=
(Sprocof(e) (0,¢)) <> (returnSite(c), (ds, c))
31.6: if s € otherAnalysis.leaks then
31.7: otherAnalysis.resume(s)
31.8: Propagate(edge)
31.9: else
31.10: paused := paused U (s, edge)
31.11: end if
31.12: od
31.13: od
31.14:end if

end procedure

procedure resume(s)
40: foreach (s, edge) € paused : s’ = s do
41: Propagate(edge)
42 paused := paused \ (s, edge)
43: od
end procedure

Figure 7: Extension to the IFDS Algorithm Making
two Analysis Dependent on Each Other

Specifically, the experiments address two research questions
under the assumption that there are more sources than sinks:

RQ1: Does the inside-out analysis scale better in terms of
memory requirements than a pure forward analysis?

RQ2: Is the inside-out analysis faster than a pure forward
analysis?

4.1 Setup

We apply the two versions of the proposed inside-out anal-
ysis - with independent and dependent sub-analyses - and
a pure forward analysis - the baseline - to the problem of
confused deputies in the Java Class Library (JCL) of Oracle
Java 7 Update 25. We use two setups for the experiments.

The first setup focuses on call sites of the JCL method
Class.forName (String), for which confused deputy attacks
(e.g. CVE-2012-4681 and CVE-2013-0422) have occurred in
the past. Untrusted code may call Class.forName, but is not
allowed to retrieve references to classes located in restricted
packages, e.g., sun.*. Therefore, forName checks the per-
mission of its immediate caller. If the caller is unprivileged
untrusted code that tries to retrieve a reference to a restricted
class an exception is thrown; otherwise, the class reference is
returned. JCL classes are trusted, thus privileged code. As
such, they may retrieve restricted class references, but must
neither leak parameters to forName nor return references to
classes in restricted class, or must perform permission checks.



We use in total 134 call sites of forName as sinksEl Sources
are parameters to all methods callable by untrusted code, i.e.,
methods that are either public or protected and declared in a
non-final public class not inside a restricted packageﬂ For the
baseline analysis, we further restrict sources to parameters
of type String passed to methods that do transitively call
a sink. This reduces the number of sources for this analysis
to 2,306. This reduction of considered sources is necessary,
as otherwise the pure forward analysis would not succeed
within up to six hours.

The first experiment setup considers a rather small num-
ber of sinks. The second setup considers significantly more
sinks. As a reaction to the exploited vulnerabilities due to
incorrect use of forName, Oracle introduced the annotation
@CallerSensitive to annotate methods performing permis-
sion checks of their immediate caller. In total, there are 89
such methods. The goal is to make it explicit that callers
may have to perform checks on their own, but also to replace
some manually maintained method white lists. In the experi-
ment, we consider the subset of @CallerSensitive methods
that may be subject to both an integrity and confidentiality
problem, i.e., those that have a receiver or parameters and a
return value. There are 64 such @CallerSensitive methods,
which results in a total of 3,656 call sites considered as sinks.

Both versions of the inside-out analysis and the baseline use
the same data-flow facts, flow functions, and construct paths
for precise reporting. The flow functions represent normal
behavior of a Java program, e.g., handling for assignments,
calls and returns. Additional flow functions are implemented
to model the behavior of StringBuilder and StringBuffer.
These types are used by developers, but also by the compiler,
for string concatenation, which is often used in the problem
we focus on in the experiments. If a field is tainted, we
conservatively assume this field to be tainted on all instances
as we do not apply a precise alias analysis. We do not evaluate
conditions and array indices; we always taint the whole array
and therefore never kill a taint if only a single array element
is overwritten. The algorithm used to construct a call graph
is the default algorithm in Soot for whole program analysis,
which is an implementation of the Class Hierarchy Analysis
(CHA) [3]. As both the inside-out and the pure forward
analyses share their flow function definitions, they report the
same results and are equally precise.

All analyses of the experiments were executed on a ma-
chine with a 4-core Intel(R) Xeon(R) X5560 CPU running at
2.80GHz and 32 GB of RAM. The used operating system is
Debian squeeze version 6.0.6 running a 2.6.32-5-xen-amd64
kernel. Each analysis was executed in a fresh JVM process.
Heros [1] uses memory-sensitive caches which on the one
hand allows it to complete analysis runs even within a re-
stricted amount of memory, but on the other hand causes
its analysis time to be heavily dependent on this amount.
We thus measured the runtime behavior with different con-
figurations, decreasing the maximum heap size available for
the Java VM (-Xmx) by 1 GB starting at 10 GB until we

4We filtered call sites of Class.forName that immediately
use constant parameters. Such constructs occur frequently
in parts of the JCL as in earlier days static references to the
Class object of a class were provided using by such a call
instead of using the later introduced class constant.

5The definition of what may be callable by untrusted code
is an approximation and should be refined for experiments
focusing on precision and recall of the analysis.
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Figure 8: Mean Runtime over Maximum Heap Size
in the Class.forName Experiment Setup

encountered OutOfMemoryErrors. For each memory setting
we ran five analyses in a row and average their results by use
of the arithmetic mean. If an analysis does not succeed in
six hours we abort it.

4.2 Results

The results of the first experiment using call sites of
Class.forName are shown in Figure All approaches ter-
minate successfully for heap sizes of at least 6 GB. The pure
forward baseline encounters OutOfMemoryErrors for heap
sizes of 5 GB and less, while the inside-out analyses still ter-
minate successfully. For heap sizes of smaller that 3 GB Soot
fails to generate an Interprocedural Control Flow Graph and
quits with an OutOfMemoryError, precluding the analyses
from completing.

The runtime of all analyses starts to increase significantly,
when approaching the minimum required heap size. For a
heap size of 10 GB, the runtime of the baseline analysis
is 170 seconds higher than for the independent inside-out
approach and 200 seconds higher than for the dependent
inside-out approach. The difference increases to a 5 times
larger runtime at 6 GB heap size for the baseline.

In Figure |§| the runtime of the analyses is shown for each
performed step, whereby path creation denotes the semi-path
creation and combination into complete paths. The three
plots on the left show results for the first experiment setup.
As expected the initialization step has equal runtimes in all
analyses as their design has no effect on that step. Also most
of the time is consumed by the initialization for larger heap
sizes. The IFDS step consumes significantly more runtime
than the path creation. For the dependent inside-out analysis
the values are too small (around 270ms) to appear in the
presented plot. However, we encountered in this experiment
only a rather small number of resulting semi-paths, that
needed to be constructed and matched. We expect the path
creation step to become a scalability problem, when more
semi-paths result from the IFDS step (c.f. Sections .
In the results of the second experiment this will become
apparent.

The results for the second experiment using call sites of
@CallerSensitive annotated methods are shown on the
right-hand side of Figure 0] Only the independent and
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dependent inside-out analyses are shown, because the pure
forward baseline analysis was not able to terminate in 6 hours
for a heap size of 10 GB; even the IFDS step did not terminate
within that time. On the contrary, the independent inside-
out analysis is able to perform the IFDS step in roughly
100 seconds, but it fails to compute all semi-paths for all
tested heap sizes. Hence, no data for path construction
and total analysis runtime can be given in the plot for this
analysis. This result confirms our assumption that semi-path
construction does pose a bottleneck. Only the dependent
inside-out analysis terminates successfully in 570 seconds of
total runtime at a heap size of 10 GB. The minimum heap
size requirement for the dependent inside-out analysis is also
larger than for the first experiment setup.

To conclude, the results of the first experiment already
indicated the answer to both research questions. However,
the second more realistic experiment setup gives a clear
answer: the inside-out analysis approach scales better and
performs faster than the pure forward baseline analysis.

S. RELATED WORK

We first compare to other static analyses for detecting
vulnerabilities that allows for confused-deputy or collusion
attacks. We further compare to taint analyses in general as
well as information-flow analyses, and comment on popular
extensions to IFDS.

5.1 Confused-Deputy and Collusion Attacks

While our analysis approach is the first to address confused-
deputy problems in Java, the problem has been widely dis-
cussed in the setting of Android security. In Android, apps
are given capabilities by assigning them static permissions
at installation time. After having been granted a capability,
an app must take care not to expose this capability through
APIs that might be callable from unauthorized third-party
apps. Exposing such APIs causes a confused-deputy prob-
lem. In situations in which the API is exposed on purpose,
one speaks of a “collusion attack” in which both the caller
and the callee app conspire against the user, for instance to
leak contact information to the internet, with the caller app

having the contact permission and the callee app having the
internet permission only.

Woodpecker [§] is a tool-based approach for finding acci-
dental capability leaks in Android applications, particularly
tuned towards pre-installed apps on stock smartphones. It
identifies capability leaks as paths from an app’s public API
to certain sensitive Android-API methods. A leak is reported
if the path includes no permission checks. Woodpecker im-
plements a forward analysis only starting at all of the app’s
entry points; it does not check if the values returned from
a sensitive low-level API are actually returned to the caller.
The tool is not implemented within a program-analysis frame-
work but rather as a “mixture of Java code, shell scripts and
Python scripts” over an off-the-shelf disassembler. Due to
this design, Woodpecker is context-insensitive.

CHEX [15] is an approach with a similar goal to Wood-
pecker but is implemented on top of the Watson Libraries
for Analysis (WALA) [23], which allows it to conduct a
context-sensitive analysis (0-1-CFA). CHEX further includes
an advanced modeling of the Android execution lifecycle,
which is important to gain recall. As Woodpecker, also
CHEX performs a forward analysis only, without tracking
return values of sensitive APIs.

Zhou and Jiang [24] developed an approach to find unpro-
tected content providers in Android apps. Malware apps can
misuse such content providers to steal or modify data man-
aged by the vulnerable app. As such, their tool ContentScope
also needs to determine both an integrity problem (to iden-
tify potential for data modification) and a confidentiality
problem (to identify data leakage). Interestingly, the details
given on the analysis suggest, though, that ContentScope
only tracks malicious input to the content providers’ low
level APIs but does not, in fact, check whether leaked values
are returned back to the attacker. For content providers this
might actually be sufficient because their API methods are
mean to return data objects—this is their very purpose. In
Java, with methods such as Class.forName, the situation is
entirely different: here many returned Class objects may not
actually leak to malicious callers.



Marfori et al. [16] try to assess the gravity of the problem
of collusion attacks in the Android space by developing an ap-
proach that allows researchers to assess the potential for such
attacks on a large scale. The approach over-approximates
the potential by analyzing static permissions and direct API
calls only; it implements no data-flow analysis.

Octeau et al. [18] developed Epicc, a static-analysis tool to
detect the targets of inter-component communication (ICC)
calls in Android, for instance using the popular “Intent” API.
Epicc can be used to resolve and match ICC calls in general,
allowing researchers to determine which apps can call one
another, and with which messages. Analyses for collusion
attacks can build on Epicc’s results. Epicc mainly consists
of a string analysis and does not track flows of attacker-
controlled or private data.

Bugiel et al. [2] developed a system to detect and mitigate
Android collusion attacks at runtime.

5.2 Taint Analysis

FlowTwist implements a special form of taint analysis.
Many taint analyses have been developed over the past
few years, focusing on different programming languages and
security-sensitive APIs. We here focus on approaches for
Java and Android. All analyses presented track flows forward
from a given set of sources in an attempt to find a path to a
set of sinks.

The static taint analysis tool TAJ (Taint Analysis for
Java) [22] is implemented in WALA [23] and focuses on web
applications. As part of a commercial product it possesses
a certain degree of maturity: For instance, it scales to large
applications by using a priority-driven call-graph construc-
tion which provides intermediate partial results based on a
priority function. Tripp et al. specifically adapted the tool
to analyze Java EE applications; hence, it is able to handle
Java beans and frameworks configured by XML files. Fur-
ther optimizations of the runtime include the parsing of the
artifacts that are used as source to generate code instead
of analyzing the generated code. WALA also supports un-
balanced analysis problems, however supports only forward
analyses in general. To the best of our knowledge, the solu-
tion to unbalanced analysis problems has never before been
formalized.

Andromeda |21], another tool from Tripp et al. used in a
commercial product, is also a static taint analysis for web
applications. Because alias analysis and even (partial) call-
graph generation are invoked on demand, it is very scalable.
It utilizes Framework For Frameworks (F4F) [20], a taint
analysis specifically designed for frameworks like Apache
Struts or Spring. Additionally Andromeda is capable of
performing incremental analyses on updated web applications.
For resolving aliases, it uses a context-sensitive on-demand
alias analysis.

FlowDroid [5] is the currently most precise taint analysis for
Android. To improve recall, it thoroughly models Android’s
execution lifecycle. To obtain precision, it uses a fully context
and flow sensitive formulation within the IFDS framework,
along with an on-demand pointer analysis inspired by the
one of Andromeda.

5.3 Information-Flow Analysis
Information-flow analysis distinguishes intself from taint

analysis by also tracking implicit information flows that can

occur through control flows such as conditional branches.

Genaim et al. |6] claim to have implemented the first infor-
mation flow analysis for Java byte code. It is implemented
with the static analyzer Julia [13|. The taint information
propagated consists of a single boolean value which is very
lightweight, but not sufficient for many fields of applica-
tion. Their approach is able to detect implicit flows in loops
and exceptions while preserving flow- and context-sensitivity.
All fields are treated as static class variables, making the
approach field based. No information is given on how the
approach deals with aliasing.

Hammer et al.[10| present a flow-, context- and object-
sensitive information flow analysis for Java applications based
on program dependence graphs. JOANA (Java Object-
sensitive ANAlysis) [9] is an evolution of Hammer’s analysis.
It has recently been extended to deal with possibilistic and
probabilistic leaks in concurrent Java programs [7].

6. CONCLUSION

We have presented FlowTwist, a novel approach to taint-
analysis addressing integrity and confidentiality issues at the
same time. FlowTwist exploits the idea of reversing the
analysis problem, which is known to be beneficial when more
sources than sinks are given in a system. Moreover, this work
presents how to exploit this characteristic, when addressing
integrity and confidentiality issues at the same time. Flow-
Twist instantiates the IFDS algorithm with a backward and
a forward taint analysis, both of which, operate inside-out,
from inner layers of the API to attacker-callable functions at
the outer API layer. We further explained how FlowTwist
extends the IFDS algorithm to maintain context sensitivity
in this situation and to efficiently construct paths which give
useful information to the developer trying to fix a detected
issue. In experiments we compared the suggested inside-out
approach against a pure forward analysis. Results of these
experiments confirmed that an inside-out approach scales
better and is faster.

In future work we plan to elaborate on two parts of the
proposed approach. First, applying the analysis to more
vulnerabilities with a focus on precision and recall. This
requires some more work on modelling permission checks and
the definition of when a data-flow presents a true integrity
and confidentiality issue, which was out of scope for the
current work that focuses on the general inside-out idea and
its scalability. Second, we want to investigate possibilities of
interweaving the path generation and the IFDS algorithm
even more, e.g., one idea is to create finite state machines,
whereas transactions represent changes to the simulated
call stack, such that combined paths can be generated by
traversing the same transactions in both state machines
resulting from each sub-analysis.
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