
A Software Product Line for Static Analyses
The OPAL Framework

Michael Eichberg Ben Hermann
Technische Universität Darmstadt
{lastname}@cs.tu-darmstadt.de

Abstract
Implementations of static analyses are usually tailored toward a
single goal to be efficient, hampering reusability and adaptability of
the components of an analysis. To solve these issues, we propose to
implement static analyses as highly-configurable software product
lines (SPLs). Furthermore, we also discuss an implementation of
an SPL for static analyses – called OPAL – that uses advanced
language features offered by the Scala programming language to
get an easily adaptable and (type-)safe software product line.

OPAL is a general purpose library for static analysis of Java
Bytecode that is already successfully used. We present OPAL and
show how a design based on software produce line engineering
benefits the implementation of static analyses with the framework.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Program
analysis

General Terms Design, Languages, Program analysis

Keywords Static analysis, Design, Software Product Line Engi-
neering, Abstract Interpretation

1. Introduction
When designing static analyses we aim for efficiency and scalabil-
ity so that the analyses can tackle reasonable and therefore interest-
ing problems. In order to achieve these design goals static analyses
are usually tailored toward solving a single, specific set of problems
and therefore often lack generality and reusability. In order to foster
reusability and make specific analyses usable in a broader context,
static analyses need to be more adaptable and require better support
for variability without sacrificing performance.

A well-known approach to address variability in a managed
fashion is software product line engineering (SPLE). We propose
to design and implement static analysis frameworks as product
lines in order to foster reuse of analysis components and allow for
tailored but generally useful analyses.

[Copyright notice will appear here once ’preprint’ option is removed.]

In this paper we present OPAL, a framework for the static anal-
ysis of Java Bytecode which implements a software product line
for the systematic creation of tailored static analyses. OPAL was
designed to satisfy both fundamental requirements: (1) easy cus-
tomizability and reusability as well as (2) performance and scal-
ability. It uses state-of-the-art programming language abstraction
from Scala to foster the development of new static analyses.

The OPAL Framework currently offers two variation points
where analyses can be configured to specific requirements. First,
the representation of Bytecode can be configured to the exact needs
of the analysis in order to save resources and to support tools that
have different requirements on the basic representation. Second,
OPAL can be configured to run basic analyses in order to help
higher-level static analyses by means of abstract interpretation.

The contributions of this paper are:

• An approach for designing static analysis frameworks based on
software product line engineering.
• OPAL, a reference implementation for this design approach,

which supports multiple representations for Java Bytecode as
well as the configuration and adaptation of the performed static
analyses to the needs of some user-developed higher-level static
analysis.

The remainder of this paper is structured as follows. Motivat-
ing our work, we extend on related work in Section 2. In Section
3, we present a short introduction into software product line engi-
neering. We provide a short introduction into the OPAL framework
in Section 4. After that, we discuss OPAL’s design w.r.t. its sup-
port for software product lines. The section ends with a discussion
how it can be used to develop specifically tailored static analyses.
In Section 6, we show an example where OPAL has already proven
beneficial for the implementation of an analysis. We conclude the
work in Section 7 with a summary and ideas for possible future
work.

2. Related Work
In general, the idea of developing single, basic static analyses such
that they are (re)usable is commonplace. But systematic reusabil-
ity and composability of basic static analyses with well-/formally
defined extension and variation points is not regularly addressed.
An example of a step in that direction is, for example, the work on
the generic framework for call graph algorithms done by Grove et
al.[15]. They developed a framework that makes it possible to sys-
tematically configure the call graph construction algorithm. How-
ever, the primary purpose of that framework was to compare differ-
ent call graph algorithms and not to provide a foundation for other
developers of static analyses.

A second example of a framework that is related to our work
is Julia developed by Fausto Spotto et al.[13]. This framework for

1 2015/7/21

the abstract interpretation of Java Bytecode implements the core
logic and enables the user to tailor the abstract interpretation to
its needs. However, in that case the possible variability does not
include changes to the base representation.

Soot [21] is a well-known static analysis framework for Java
Bytecode. It uses various methods for configuration or extension
and it is possible to configure Soot to run many different basic
analysis. This can be done via a command-line or a programmatic
interface. Additionally, the framework can be extended by adding
custom code – so called transforms – to the execution packs Soot
defines. Using this approach, Soot has been extended, e.g., to sup-
port complex data-flow analyses using the IFDS algorithm [7, 20]
or to allow other Bytecode formats such as DEX [6]. Finally, mul-
tiple of those extensions can also be combined [12]. However, tai-
loring Soot’s existing analysis is generally done in an ad-hoc way
and Soot uses multiple means to express the configuration of an
analysis.

3. Software Product Line Engineering
Following [19], software product line engineering (SPLE) is a
paradigm to develop software applications using platforms and
mass customization. A platform in this sense is a set of components
and interfaces that form a common structure to support managed
variability.

A product of a product line is configured by a selection of
features (variants) from a set of possible features (variation points).
Individual features can be added to a product if they conform to the
structure of managed variability the product line offers.

One of the most popular formal modeling techniques for soft-
ware product lines are Feature Models. They organize features and
their dependencies in a hierarchial fashion based on their granular-
ity. The relationships between features can be expressed using the
following primitives:

Mandatory feature
Feature

If a parent feature is present in
the product, so must this fea-
ture.

Optional feature
Feature

If a parent feature is present in
the product, this feature may
or may not be present.

OR relationship

If a parent feature is present
in the product, at least one of
the child features has to be
present.

XOR relationship

If a parent feature is present
in the product, exactly one of
the child features has to be
present.

As in software product line engineering developers need to put
effort into predictive rather than opportunistic software reuse. The
advantages include significant improvements in cost and time-to-
market. [22]

4. Overview of the OPAL Framework
OPAL[3] is a general purpose static analysis library for Java Byte-
code that is developed with the goals of being easy to customize,
extensible and scalable. OPAL supports Java 1.1 - 1.8 class files
and facilitates the development of analyses ranging from prototyp-
ing ad-hoc, lightweight static analysis to the development of static
analyses that need inter-procedural data- and control flow informa-
tion.

The OPAL framework is the result of the experience gained
while developing the Java Bytecode Framework BAT [10, 11] as

well as static analyses for Java Bytecode [17]. OPAL is already suc-
cessfully used[14, 17]1. The overall design is also influenced by the
design of the following frameworks for the static analysis/engineer-
ing of Java Bytecode: BCEL[2], ASM[1], Javassist[8] and Soot[4].

In contrast to the previous frameworks, OPAL is implemented
in Scala and uses the language’s advanced features, to achieve the
described design goals.

Customizability and Extensibility For these two design goals
OPAL in particular relies on Scala’s support for mixin-composition
by means of traits, the advanced type system (path-dependent
types, self-type annotations and dependent method types) and
Scala’s pattern matching.

Scalability This goals is achieved by two major design decisions:
First, by parallelizing all implemented analyses and by facili-

tating the development of static analyses that are parallelized. To
this end, all core data-structures (e.g., the representation of the
classes, the class hierarchy and the call graph) are thread safe.
In case of OPAL, thread safety is primarily achieved by making
the data-structures effectively immutable. A design that uses im-
mutable data-structures is generally fostered by Scala, as Scala fa-
vors immutable data-structure over mutable ones. Hence, most of
OPAL is thread-safe by design. This makes it possible to access the
data-structures concurrently without any needs for further explicit
synchronization.

Second, by facilitating the customization of OPAL, it is possible
to adapt the framework to the precise needs of the analysis that will
be developed. This generally helps to improve the overall memory-
and runtime-performance and will be discussed next.

In the following, the features of the OPAL software-product line
and how to customize OPAL to the needs of an analysis is shown.
A detailed discussion of the performance and scalability is out of
scope for this paper.

5. The OPAL Software Product Line
The Software Product Line implemented by OPAL basically con-
sists of two major parts. The first one makes it possible to cre-
ate very different kinds of representations for Java Bytecode and
the second one makes it possible to customize and extend the per-
formed basic static analyses to the specific needs of user-developed
higher-level static analyses. Given that the second one analyzes a
method’s implementation, it requires that the configuration of the
first one contains the respective features. That means, it requires
that the bytecode instructions of a method are represented using
specific classes. Both parts are discussed in the next two sections.

5.1 Different Representations for Java Bytecode
As discussed in the introduction, the requirements of tools on the
representation of Java Bytecode vary greatly. They range from rep-
resentations using objects over XML to Prolog based representa-
tions. Support for this kind of variability is achieved by completely
decoupling the infrastructure for reading in Java class files from
the representation that is generated. Moreover, independent of the
generated representation, the code for parsing class files can al-
ways directly be reused and adapted. This variability is achieved
by following the approach proposed in [18]; the paper discusses –
among others – family polymorphism in the context of Scala and
how to achieve that by means of a component oriented program-
ming model.

In OPAL this approach is reified by defining one service com-
ponent for each major data structure of a Java class file (basically,
the class file as such, the constant pool, a field, a method and each

1 In the respective papers the framework was called BAT.

2 2015/7/21

of the attributes of a class file). Each component (e.g., for process-
ing a class file – cf. Listing 1) is responsible for reading in the
respective data structure (Line 22) and to create the representation
of the data structure using a factory method (Line 14). This ap-
proach enables us to completely abstract over the generated repre-
sentation (Lines 2–7). The reading of other major data structures
(Lines 24–28) is always delegated to the respective components
(Lines 9–12). This is done using abstract methods which need to
be implemented by other components.

1 trait ClassFileReader{
2 /∗ Abstract over the representation of the ... ∗/
3 type ClassFile
4 type Constant Pool
5 type Fields
6 type Methods
7 type Attributes
8 ...
9 /∗ Methods to read in the respective data structures. ∗/

10 def Constant Pool(in: DataInputStream): Constant Pool
11 def Fields(in: DataInputStream, cp: Constant Pool): Fields
12 def Methods(in: DataInputStream, cp: Constant Pool): Methods
13 ...
14 /∗ Factory method to create a representation of a Class File. ∗/
15 def ClassFile(
16 ... // Version information, defined type, etc.
17 fields: Fields,
18 methods: Methods,
19 attributes: Attributes)(
20 implicit cp: Constant Pool): ClassFile
21
22 def ClassFile(in: DataInputStream): ClassFile = {
23 // read magic and version information
24 val cp = Constant Pool(in)
25 // read access flags etc.
26 val fields = Fields(in,cp)
27 val methods = Methods(in,cp)
28 val attributes = Attributes(in,cp)
29 // call factory method
30 ClassFile(...,fields,methods,attributes)(cp)
31 }
32 }

Listing 1. Basic infrastructure for reading Java class files

To be able to read a Java class file it is necessary to plug all
service components together (cf. Listing 3) such that all require-
ments of all components are satisfied. This requires that all abstract
types are made concrete and that the factory methods are corre-
spondingly implemented. This is generally done in traits that ex-
tend the XYZReader traits and are called XYZBinding. For example,
Listing 2 shows the trait with the final type binding (Line 4) and
factory method for creating representations of Methods (Line 5-9).

1 trait MethodsBinding extends MethodsReader {
2 this: ConstantPoolBinding with AttributeBinding =>
3
4 type Method Info = de.tud.cs.st.bat.resolved.Method
5 def Method Info(
6 accessFlags: Int, name: Int, descriptor: Int,
7 attributes: Attributes)(
8 implicit cp: Constant Pool): Method Info =
9 create Method representation

10 }

Listing 2. Final type binding for creating Method representations

The final composition is then supported by Scala by means of
mixin-composition and ensures that only compatible service com-
ponents are plugged together and that no requirements remain un-
satisfied. A minimal, valid configuration is shown in Listing 3. It
can be used to read a class file’s public interface if the analysis

does not need information about the implementation of the respec-
tive classes. This is often the case for architecture analyses. In that
case detailed information about the implementation of the libraries
used by the application/library is not required. A configuration that
completely reifies all standard information is shown in Listing 4.
An excerpt of the feature diagram related to the variability of the
first part is outlined in Figure 1. The diagram shows the variability
discussed in the code. Additionally, it shows that we actually have
two implementations of a MethodsReader; one that creates a rep-
resentation that completely abstracts from the constant pool (start-
ing with “resolved.MethodsBinding”) and which is comparable to
the representation used by, e.g., BCEL and one that is a raw rep-
resentation that keeps the references to the constant pool (called
“native.MethodsBinding”) .

1 class Java7ClassFilesPublicInterface
2 extends ConstantPoolBinding
3 with InterfacesBinding
4 with FieldsBinding
5 with MethodsBinding
6 with AttributesReader
7 with SkipUnknown attributeReader
8 with AnnotationsBinding
9 with InnerClasses attributeBinding

10 with ClassFileBinding
11 // further attributes related to a class’ public interface

Listing 3. A complete configuration to read in the public interface
of .class files

1 class Java7ClassFiles extends Java7ClassFilesPublicInterface
2 with CodeAttributeBinding
3 with StackMapTable attributeBinding
4 with LineNumberTable attributeBinding
5 with LocalVariableTable attributeBinding
6 with BootstrapMethods attributeBinding
7 // further ‘‘code’’ related attributes

Listing 4. Completely reifying a .class File

Given the proposed approach, it is directly possible to specify
which information should be made available in which way. Addi-
tionally, it is possible to selectively adapt a generated representa-
tion by exchanging the component for reading a method’s Code
Attribute (the body of a method) and to reuse all other components.
This could be useful if we want to directly transform the stack-
based bytecode representation in a higher-level representation such
as single static assignment form[9]. Finally, it is possible to reuse
the complete infrastructure for parsing class files to create com-
pletely different representations (e.g. XML or Prolog based).

5.2 Extensible and Configurable Static Analysis
The second part of the software product line enables the user to
adapt the basic static analyses performed by the framework to the
needs of some higher-level static analyses.

To this end, OPAL implements a highly-configurable frame-
work for the (abstract) interpretation of Java Bytecode that facil-
itates the development of lightweight static analyses for bug de-
tection or for verifying certain properties. As in the previous case,
each major building block is represented as a component. In this
case, however, a component is responsible for performing all rele-
vant computations related to a specific set of bytecode instructions.
Furthermore, Scala’s virtual classes pattern2 is used in its full en-
tirety. This pattern enables a form of family polymorphism and has

2 https://wiki.scala-lang.org/display/SIW/VirtualClasses

3 2015/7/21

AttributesReaderConstantPoolReader

CodeAttributeReader

Class File Representation

MethodsReaderClassFileReader

ConstantPoolBinding UnknownAttributeReader

SkipUnknownAttributeReader UnknownAttributeReader

resolved.MethodsBinding native.MethodsBinding

...

...

implies

Figure 1. Excerpt of the Feature Diagram related to supporting different representations

specialized
 handling for

 certain
values

StringValues ClassValues

FloatValuesReferenceValues

...

Abstract Interpretation Domain

IntegerValues

TypeLevel TypeLevel MultipleOrigins TypeLevel Signed

...InvokeInstructionFieldAccessInstruction

additional
handling

for invoke
instructions

RecordValues user defined

Figure 2. Excerpt of the Feature Diagram related to the configuration of an abstract domain

similar advantages as offered by native virtual classes as available,
e.g., in CaesarJ3[5].

For example, one component (called a Domain in the frame-
work) – shown in Listing 5 – is responsible for performing all com-
putations related to Long values and each component basically con-
tains two major parts. The first part (Lines 3-8) refines the represen-
tation for handling Long values. In the shown case, only the type
information is encoded, but it is possible to encode “arbitrary”
information, such as the value’s sign or the value’s current range.
The second part (Lines 10-19) implements all bytecode instructions
related to the respective value and the chosen representation. The
conversion instructions (Lines 17-19) are typically generically im-
plemented using the generic factory methods declared by Domain.
Finally, each component/domain is responsible for implementing
its related factory methods (Lines 21-24). Hence, in this design, the
trait Domain has the role of the central coordinator that declares
all methods needed by the framework for the interpretation of the
bytecode and each component implements a cohesive subset of the
methods as just discussed. Additionally, each domain can provide
additional functionality that is need by subsequent analyses, but
which is not required by the framework.

1 trait DefaultTypeLevelLongValues extends Domain {
2 type DV = DomainValue
3 case object ALongValue extends Value with IsLongValue {
4 this: DV =>
5 override def computationalType = ComputationalTypeLong

3 Compared to languages with native support for virtual classes, Scala’s
virtual classes pattern is syntactically far more verbose and requires the
user, e.g., to perform the deep mixin-composition of the virtual classes
manually. This limits its scalability. Nevertheless, the same level of type
safety can be achieved and overall the pattern has proven to be suitable for
our purposes.

6 override def doJoin(pc: PC, value: DV): Update[DV] =
7 NoUpdate
8 }
9

10 override def lcmp(pc: PC, v1: DV, v2: DV): DV = . . .
11 override def lneg(pc: PC, v: DV) = . . .
12
13 override def ladd(pc: PC, v1: DV, v2: DV): DV = . . .
14 . . . other mathematical instructions related to long values
15 override def lxor(pc: PC, v1: DV, v2: DV): DV = . . .
16
17 override def l2d(pc: PC, v: DV): DV = . . .
18 override def l2f(pc: PC, v: DV): DV = . . .
19 override def l2i(pc: PC, v: DV): DV = . . .
20
21 override def LongValue(pc: PC): DV =
22 ALongValue
23 override def LongValue(pc: PC, value: Long): DV =
24 ALongValue
25 }

Listing 5. Component/Domain related to computations with Long
values

The variation points that results from the proposed componen-
tization4 are shown in the feature diagram Figure 2. We have one
variation point per Java Virtual Machine (JVM) level type [16] (ref-
erence values, int, long, float, double) as well as further variation
points for further cohesive sets of instructions (e.g., method invo-
cations, field access, synchronization, . . .). For each variation point
one to more implementations exist that enable a fine grained con-
trol over the overall precision of the analysis. In all cases a basic
implementation exists that deals with the respective instructions at

4 Other partitionings are also supported by the framework, but are out of
scope for this paper.

4 2015/7/21

the JVM type level. But, as shown in the feature diagram, more ad-
vanced features are also readily available. For example, in case of
reference values it is possible to precisely track java.lang.String and
java.lang.Class values, which is often useful for analyses that need
to consider Java Reflection.

As previously, to get a concrete Domain that can be used by
OPAL to interpret some Java bytecode, it is sufficient to do a mixin-
composition of the desired domains (cf. Listing 6).

In general, a complete domain as shown in Listing 6 can be
used in two different ways: First, to directly perform an abstract
interpretation of a method and to analyze the results afterwards.
Specifically this means, as soon as the abstract interpretation has
completed, it is possible to analyze the abstract values (operands)
of each instruction and to detect, e.g., that a certain if-condition
always or never holds. Second, to further adapt the domain to
perform some computations on the fly while the interpretation is
going on.

1 class BaseDomain extends Domain
2 with DefaultDomainValueBinding
3 with Configuration
4 with DefaultTypeLevelReferenceValues
5 with DefaultTypeLevelIntegerValues
6 with DefaultTypeLevelLongValues
7 with DefaultTypeLevelFloatValues
8 with DefaultTypeLevelDoubleValues
9 with DefaultIntegerValuesComparison

10 with TypeLevelFieldAccessInstructions
11 with TypeLevelInvokeInstructions
12 with ProjectBasedClassHierarchy
13 with IgnoreMethodResults
14 with IgnoreSynchronization {
15 type Id = String
16 def id : Id = ”TypeLevelDomain”
17 }

Listing 6. Final configuration of a Domain

1 class CHACallGraphDomain(
2 val project: Project[URL],
3 val theClassFile: ClassFile, val theMethod: Method)
4 extends BaseDomain {
5 type Id = Method
6 def id = theMethod
7
8 abstract override def invokevirtual(
9 pc: PC, declaringClass: ReferenceType,

10 name: String, descriptor: MethodDescriptor,
11 operands: List[DomainValue]): MethodCallResult = {
12 val result = super.invokevirtual(
13 pc, declaringClass, name, descriptor, operands)
14 . . . construct call graph . . .
15 result
16 }
17 . . . handling for other invoke instructions . . .
18 }

Listing 7. A Domain for calculating a Call Graph

A corresponding example is shown in Listing 7; the call graph is
iteratively computed whenever an invoke(virtual,special,interface)
(Lines 8-16) instruction is encountered. In that case, the general
handling of invoke instructions is implemented by BaseDomain and
the CHACallGraphDomain just intercepts (Line 8) the respective
calls, but relies on the BaseDomain (Line 12) for computing the
result.

6. Discussion
To validate the general approach, we have implemented an analysis
two times, once using SOOT and the other using OPAL. The analy-

sis searches for specific instances of a confused-deputy. In this case
we search for calls to Class.forName(...) that are executed by privi-
leged code of the JDK, but where the class name is determined by
an unprivileged caller of the privileged code. This enables unpriv-
ileged callers to load potentially harmful classes. The latter then
have the same rights as privileged classes. This effectively circum-
vents the Java sandbox. The analysis is motivated by a vulnerability
of the Java platform that is listed in the Common Vulnerabilites and
Exposures Directory under the identifier CVE-2013-4681.

The SOOT[21] based version of the analysis uses an imple-
mentation of the IFDS algorithm [20] as its foundation. In case
of OPAL, we use the abstract interpretation framework as a foun-
dation which is tailored to the specific needs of the analysis and
exploits OPAL’s SPL features.

1 trait TaintAnalysisDomain[Source]
2 extends Domain
3 with DefaultDomainValueBinding
4 with Configuration
5 with DefaultStringValuesBinding // handles all reference values
6 with DefaultTypeLevelIntegerValues
7 with DefaultTypeLevelLongValues
8 with DefaultTypeLevelFloatValues
9 with DefaultTypeLevelDoubleValues

10 with TypeLevelFieldAccessInstructions
11 with TypeLevelInvokeInstructions
12 with ProjectBasedClassHierarchy[Source]
13 with IgnoreMethodResults
14 with IgnoreSynchronization
15 with Report {
16 type Id = CallStackEntry
17 // Further Customization
18 // (≈635 lines of code)
19 }

Listing 8. Base configuration of a Domain used for taint analyses.

In Listing 8 the Domain that is used to implement the described
analysis is shown. We use – when compared to the domain used
for constructing the call graph (Listing 7) – a different domain
for reference values. This analysis needs more precise knowledge
about StringValues and for that reason uses a domain that can more
precisely track respective values (Line 5 in Listing 8).

Both analyses do identify the same callers and have roughly
comparable runtimes5. In case of OPAL the analysis is imple-
mented in ≈650 lines of Scala code. The Java-based implemen-
tation in SOOT required ≈5000 lines of code. Given these num-
bers, we are convinced that the approach implemented by OPAL
provides a good foundation for the efficient development of static
analyses.

All line number metrics provided in this section are line num-
bers excluding comments.

7. Conclusion
The OPAL framework, as presented, is a significant step in the di-
rection of a software product line for static analyses that offers users
managed variability and systematic adaptability of the framework
to their needs. The framework already offers a large number of vari-
ation points and enables the user to select from various ready-to-
use features per variation point. This makes it possible to use the
framework for analyses ranging from simple metrics over archi-
tecture validation to selected control- and data-flow analyses while
only paying for features that are actually required. Additionally, the
framework is generally open for extension and enables the user to
implement additional features on its own.

5 The times are not directly comparable as SOOT does various additional
analyses, e.g., transformation into SSA form, that are not done by OPAL.

5 2015/7/21

We are convinced, that the presented approach delivers an un-
precedented level of systematic adaptability that scales to further
use cases. However, further extensions of the software product line
will be done w.r.t. the support for more complex inter-procedural
analyses (e.g., points-to analyses). Addressing these issues is part
of ongoing and future work.

Acknowledgments
This work was supported by the German Ministry of Research and
Education (BMBF) within EC SPRIDE.

References
[1] Asm, 2014. URL http://asm.ow2.org.
[2] Byte code engineering library (BCEL), 2014. URL http://

commons.apache.org/proper/commons-bcel/.
[3] Opal, 2014. URL http://www.opal-project.de.
[4] Soot: a Java Optimization Framework, 2014. URL http://www.

sable.mcgill.ca/soot/.
[5] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann. An overview of

caesarj. In A. Rashid and M. Aksit, editors, Transactions on Aspect-
Oriented Software Development I, volume 3880 of Lecture Notes in
Computer Science, pages 135–173. Springer Berlin Heidelberg, 2006.
ISBN 978-3-540-32972-5. . URL http://dx.doi.org/10.1007/
11687061_5.

[6] A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus. Dexpler: convert-
ing android dalvik bytecode to jimple for static analysis with soot. In
Proceedings of the ACM SIGPLAN International Workshop on State
of the Art in Java Program analysis, pages 27–38. ACM, 2012.

[7] E. Bodden. Inter-procedural data-flow analysis with IFDS/IDE and
Soot. In 1st ACM SIGPLAN International Workshop on the State Of
the Art in Java Program Analysis, pages 3–8, 2012. . URL http:
//www.bodden.de/pubs/bodden12inter-procedural.pdf.

[8] S. Chiba. Javassist, 2014. URL http://www.javassist.org/.
[9] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.

Efficiently computing static single assignment form and the control
dependence graph. ACM Trans. Program. Lang. Syst., 13(4):451–490,
Oct. 1991. ISSN 0164-0925. . URL http://doi.acm.org/10.
1145/115372.115320.

[10] M. Eichberg, M. Kahl, D. Saha, M. Mezini, and K. Ostermann.
Automatic incrementalization of prolog based static analyses. In
M. Hanus, editor, Practical Aspects of Declarative Languages, vol-
ume 4354 of Lecture Notes in Computer Science, pages 109–123.
Springer Berlin Heidelberg, 2007. ISBN 978-3-540-69608-7. . URL
http://dx.doi.org/10.1007/978-3-540-69611-7_7.

[11] M. Eichberg, M. Monperrus, S. Kloppenburg, and M. Mezini. Model-
driven engineering of machine executable code. In T. Kühne, B. Selic,
M.-P. Gervais, and F. Terrier, editors, Modelling Foundations and Ap-
plications, volume 6138 of Lecture Notes in Computer Science, pages
104–115. Springer Berlin Heidelberg, 2010. ISBN 978-3-642-13594-
1. . URL http://dx.doi.org/10.1007/978-3-642-13595-8_
10.

[12] C. Fritz, S. Arzt, S. Rasthofer, E. Bodden, A. Bartel, J. Klein,
Y. le Traon, D. Octeau, and P. McDaniel. Highly precise taint
analysis for android applications. Technical Report TUD-CS-2013-
0113, EC SPRIDE, 2013. URL http://www.bodden.de/pubs/
TUD-CS-2013-0113.pdf.

[13] S. Genaim and F. Spoto. Information flow analysis for java bytecode.
In VMCAI, pages 346–362, 2005.

[14] P. G. Giarrusso, K. Ostermann, M. Eichberg, R. Mitschke, T. Rendel,
and C. Kästner. Reify your collection queries for modularity and
speed! In Proceedings of the 12th Annual International Conference
on Aspect-oriented Software Development, AOSD ’13, pages 1–12,
New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1766-5. . URL
http://doi.acm.org/10.1145/2451436.2451438.

[15] D. Grove and C. Chambers. A framework for call graph construction
algorithms. ACM Trans. Program. Lang. Syst., 23(6):685–746, Nov.

2001. ISSN 0164-0925. . URL http://doi.acm.org/10.1145/
506315.506316.

[16] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. The JavaTM
Virtual Machine Specification. Oracle America, Inc., java se 7 edition
edition, July 2011.

[17] R. Mitschke, M. Eichberg, M. Mezini, A. Garcia, and I. Macia. Mod-
ular specification and checking of structural dependencies. In Pro-
ceedings of the 12th Annual International Conference on Aspect-
oriented Software Development, AOSD ’13, pages 85–96, New York,
NY, USA, 2013. ACM. ISBN 978-1-4503-1766-5. . URL http:
//doi.acm.org/10.1145/2451436.2451448.

[18] M. Odersky and M. Zenger. Scalable component abstractions. SIG-
PLAN Not., 40(10):41–57, Oct. 2005. ISSN 0362-1340. . URL
http://doi.acm.org/10.1145/1103845.1094815.

[19] K. Pohl, G. Böckle, and F. Van Der Linden. Software product line
engineering, volume 10. Springer, 2005.

[20] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In Proceedings of the 22nd ACM
SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 49–61, 1995.

[21] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundare-
san. Soot-a java bytecode optimization framework. In Proceedings of
the 1999 conference of the Centre for Advanced Studies on Collabo-
rative research, page 13. IBM Press, 1999.

[22] F. J. van der Linden, K. Schmid, and E. Rommes. Software product
lines in action. Springer, 2007.

6 2015/7/21

